首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to clarify the possible interaction between endogenous opioids and glucose homeostasis in obesity we studied Beta-Endorphin (B-Ep), ACTH, cortisol and insulin plasma levels in response to an oral glucose tolerance test (OGTT) in 8 females suffering from uncomplicated obesity and in 6 healthy volunteers of normal weight. Results were evaluated in terms of secretion areas subtracted from basal value. Basal glucose, insulin and B-Ep levels were significantly higher in the obese patients compared to controls, cortisol levels and ACTH were not statistically different between obese and normal subjects. During OGTT total areas of insulin secretion were significantly higher in the obese patients; cortisol, ACTH, B-Ep plasma levels did not change in controls, whereas obese patients showed a response to B-Ep which reached a peak at 60 minutes. The area of B-Ep response to OGTT in obese patients was significantly higher than in controls. On the basis of these results we may suggest that the opioid system belongs to the chain of neuroendocrine and metabolic events responsible for the origin and the growth of overweight. But the possibility exists that obesity itself can enhance the B-Ep secretion above all through overeating. In this regard it is to stress that glucose ingestion induces in obese patients, differently from normal subjects, insulin hypersecretion and the B-Ep secretion, possibly from gastro-enteric tract and/or pancreatic isles.  相似文献   

2.
Zinc status in plasma of obese individuals during glucose administration   总被引:1,自引:0,他引:1  
To know whether plasma zinc status is altered under acute hyperglycemic state, the interrelationships among plasma glucose, insulin, and zinc concentrations during oral glucose tolerance test (OGTT) in obese individuals and their lean controls were studied. Plasma glucose and insulin concentrations under fasting as well as those values in response to OGTT were significantly higher in obese individuals than those in lean controls. On the other hand, the obese had lower fasting plasma zinc concentrations compared to lean controls (13.5 vs 18.1 Μmol/L,p < 0.005). Under fasting, plasma zinc concentrations in overall individuals inversely correlated to their body mass index (BMI) (r = -0.516), plasma glucose (r = -0.620), and plasma insulin (r = -0.510). However, there were no significant changes in plasma zinc and copper values during OGTT in both obese individuals and lean controls. This study showed that plasma zinc values had no changes during OGTT in obese individuals. The results also indicated that lower fasting plasma zinc concentrations in obese individuals were not the short-term metabolic result.  相似文献   

3.
Objective: We sought to elucidate further the mechanisms leading to weight loss after gastric bypass (GBP) surgery in morbidly obese individuals. Ghrelin is a gastroenteric appetite‐stimulating peptide hormone, fasting levels of which decrease with increasing adiposity and increase with diet‐induced weight loss. In addition, ghrelin levels rapidly decline postprandially. Research Methods and Procedures: We measured serum ghrelin responses to a 75‐g oral glucose tolerance test (OGTT) in 6 subjects who had undergone GBP surgery 1.5 ± 0.7 years before testing and compared these responses with 6 obese subjects about to undergo GBP surgery, 6 obese nonsurgical subjects (matched for BMI to the post‐GBP surgical group), and 5 lean subjects. Results: Despite weight loss induced by the GBP surgery, fasting serum ghrelin levels were significantly lower in the post‐GBP surgery group than in the lean subject (by 57%) or pre‐GBP surgery (by 45%) group. Serum ghrelin levels during the OGTT were significantly lower in postoperative than in lean, obese pre‐GBP surgical, or obese nonsurgical subjects. The magnitude of the decline in serum ghrelin levels between 0 and 120 minutes post‐OGTT was significantly smaller in postoperative (by 62%), obese pre‐GBP surgical (by 80%), or obese nonsurgical (by 69%) subjects in comparison with lean subjects. Discussion: Serum ghrelin levels in response to OGTT are lower in subjects post‐GBP surgery than in either lean or obese subjects. Tonically low serum ghrelin levels may be involved in the mechanisms inducing sustained weight loss after GBP surgery.  相似文献   

4.
The present study was designed to determine the effect of naloxone, a specific opiate receptor antagonist, on postprandial levels of insulin, glucagon, pancreatic polypeptide (PP), somatostatin-like immunoreactivity (SLI) and gastrin in response to carbohydrate and fat-rich test meals in a group of 6 healthy volunteers. The addition of naloxone to a meal consisting of 50 g sucrose dissolved in 200 ml water augmented the rise of plasma insulin levels significantly during the first 30 min after its ingestion and reduced the decrease of plasma glucagon. During the ingestion of a fat-rich meal in form of 200 ml cream naloxone reduced the rise in plasma insulin and pancreatic polypeptide and elevated glucagon levels during the last 30 min of the experimental period. When sucrose was dissolved in 200 ml cream the addition of naloxone augmented the postprandial rise of insulin levels between 15 and 60 min after ingestion of the meal and elicited an increase of plasma SLI and PP levels throughout the entire experimental period which indicates that post-prandial levels of insulin, glucagon, PP and SLI are modulated via endogenous opiate receptors during the ingestion of carbohydrate and fat test meals and that this effect depends on the composition of the ingested nutrients. These data raise the possibility that endogenous opiates participate in the regulation of postprandial insulin, glucagon, somatostatin and pancreatic polypeptide release not only in certain disease states as demonstrated recently for insulin secretion in type II diabetes mellitus but endogenous opiates may also be of importance under physiological conditions.  相似文献   

5.
Insulin, glucagon, and somatostatin concentrations were measured in 7 lean and 7 obese non-diabetic subjects over 7 days of fasting. In addition each subject was given a 75 g oral glucose tolerance test after fasts of 12 h and 7 days. In lean subjects complete food deprivation induced a significant decrease in the circulating levels of both insulin and somatostatin, while glucagon nearly doubled by 48 h and then remained constant for the duration of starvation. Refeeding with oral glucose suppressed the increased plasma glucagon, but insulin and somatostatin responses were enhanced in comparison with the prefast values, as assessed by the integrated areas of change. In obese subjects peripheral insulin and somatostatin levels were significantly lowered, but plasma glucagon level was unchanged at the end of the starvation period. In the same group glucose-induced insulin and somatostatin release were greater than in the fed state. Suppression of plasma glucagon by glucose appeared less complete in obese than in lean subjects. It is concluded that prolonged starvation enhances D-cell responsiveness to glucose in lean and obese subjects.  相似文献   

6.
This study examines the immediate effect of modulating postprandial insulin and insulinotropic hormone (glucose-dependent insulinotropic polypeptide, GIP; glucagon-like peptide-1, GLP-1) secretion on the activation of lipoprotein lipase (LPL) in six lean and six obese age-matched women. Subjects were given, on two separate occasions, 340 kcal of carbohydrate alone or combined with an IV infusion of octreotide, (100 microg infusion from 30 min before the meal for 150 min). Post-heparin LPL activity (10,000 U) was measured on each occasion 120 minutes post-carbohydrate. Following oral carbohydrate postprandial plasma insulin levels were significantly higher in obese subjects than in lean (p < 0.01). Glucose tolerance was slightly impaired in obese subjects. Insulin, GIP and GLP-1 secretion post-carbohydrate was markedly reduced by octreotide in lean and obese subjects. LPL activity was similar in the two groups after carbohydrate administration and was unaffected by octreotide. Inhibition of postprandial insulin, GIP and GLP-1 secretion acutely did not reduce post-heparin LPL activity either in lean or obese subjects.  相似文献   

7.
This study examines the immediate effect of ingestion of oral carbohydrate and fat on lipoprotein lipase (LPL) activity post-heparin in six lean and six obese age-matched women. Subjects were given, on two separate occasions, 340 kcal carbohydrate or an equicaloric amount of fat, both in 300 ml of water. Post-heparin LPL activity (10,000 U) was measured on each occasion 120 minutes after ingestion of the meal. Following oral carbohydrate postprandial plasma insulin levels were significantly higher in obese subjects than in lean (p < 0.01). Impaired glucose tolerance was seen in the obese group. GIP secretion was similar in lean and obese subjects both during oral fat and carbohydrate ingestion. GLP-1 secretion post-carbohydrate was lower in obese subjects. Total LPL activity unadjusted for body weight was similar in the two groups after carbohydrate administration but was significantly lower when adjusted per kg body weight. Total LPL activity was lower in the lean group at 130 minutes after fat administration (p < 0.02). Fasting serum triglycerides were higher in the obese group and were inversely related to the post-carbohydrate LPL activity (r = - 0.65, p < 0.02). Intraluminal lipoprotein lipase activity is not increased in established obesity. Fat and carbohydrate nutrients may affect LPL activity differently in lean and obese subjects.  相似文献   

8.
Blood glucose, plasma insulin and C-peptide responses to oral glucose tolerance test (OGTT) were studied under basal conditions and immediately after 90-min exercise (60% VO2 max) in nondiabetic subjects with normal or impaired glucose tolerance. During the postexercise recovery blood glucose response to OGTT was increased in normal subjects and markedly decreased in those with impaired glucose tolerance, while insulin and C-peptide responses were diminished in both subgroups. The ratio of blood glucose to insulin was similarly elevated in all subjects. Comparing with basal conditions no significant changes were found in C-peptide to insulin ratio in response to OGTT after exercise, although a tendency towards an elevation of this ratio was noted in the subjects with impaired glucose tolerance. The data indicate that the reduced insulin response to OGTT during postexercise recovery in healthy subjects is due to diminished insulin secretion without any substantial changes in the hormone removal from blood, whereas in the glucose intolerant men the latter process may be enhanced.  相似文献   

9.
Background: We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon‐like peptide‐1 (GLP‐1). Objective: Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP‐1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures: Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA‐cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP‐1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results: Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP‐1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP‐1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion: Overall, combining HP with HF in the diet increased GLP‐1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet‐induced vs. genetic obesity with overt hyperleptinemia.  相似文献   

10.
Galanin has been found in increased amounts in subjects with type 2 diabetes. The purpose of the present study was to determine the levels of galanin in healthy volunteers during an oral glucose tolerance test (OGTT). We enrolled 11 healthy volunteers, 4 males aged 48+/-3.56 years with BMI 27+/-0.5 kg/m (2) and 7 females aged 41.3+/-3.05 years with BMI 27.6+/-0.9 kg/m (2). All were in good health without cardiac, hepatic, renal or other chronic disease. None were taking any medication affecting glucose tolerance (beta-blockers, thiazide diuretics, and corticoids) and none had a first degree relative with type 2 diabetes. Glucose tolerance was determined by using the International Expert Committee criteria. Blood samples were collected at 0, 30, 60, 90, 120 and 180 minutes for the measurement of plasma glucose, insulin, C-peptide and human galanin (hGal). During the OGTT, hGal exhibited a significant increase from time 0 to 90 minutes (p < 0.001) and returned to the basal values at 180 minutes, while a positive correlation of blood glucose with hGal was observed during the time scale of OGTT. A significant increase was detected both in insulin and C-peptide from the early beginning of the test at 30 minutes, which remained steady until 90 minutes, and returned gradually to the basal values at 180 minutes. No relationship was found either between hGal and serum insulin, or between hGal and serum C-peptide among the healthy subjects, during the OGTT.  相似文献   

11.
Introduction: Secretory products from adipocytes may contribute to deterioration in glycaemic control and increased insulin resistance (IR). Retinol-binding protein 4 (RBP-4) may increase IR in mice, with elevated levels in insulin-resistant mice and humans with obesity and type 2 diabetes. However, the mechanisms regulating RBP-4 synthesis remain not fully understood. It is not clear whether short-term glucose-induced hyperglycaemia and hyperinsulinaemia as well as glucocorticosteroid-induced increase in IR might be reflected in alterations in serum RBP-4 levels in humans. In order to investigate this, we measured serum RBP-4, glucose and insulin concentrations during 75.0 gram oral glucose tolerance test (OGTT) - Study 1, as well as before and after oral administration of dexamethasone - Study 2. Material and methods: Both studies included 35 subjects (8 males), age (mean +/- SD) 39.1 +/- 15.6 years, BMI 35.8 +/- 8.7 kg/m(2). Twenty-four of those subjects (5 males), age 38.7 +/- 15.1 years, BMI 34.4 +/- 8.3 kg/m(2), had 75 gram oral glucose tolerance test (OGTT) - Study 1. Blood samples were taken before (0 minutes), and at 60 and 120 minutes of OGTT. 17 subjects (3 males, 4 subjects with type 2 diabetes), age 43.1 +/- 18.1 years, BMI 36.7 +/- 9.0 kg/m(2) underwent screening for Cushing's disease/syndrome (Study 2). Dexamethasone was administered in a dose of 0.5 mg every 6 hours for 48 hours. Fasting serum concentrations of RBP-4, glucose and insulin were assessed before (D0) and after 48 hours of dexamethasone administration (D2). IR was assessed by HOMA in all non-diabetic subjects and in subjects participating in study 1 also by Insulin Resistance Index (IRI), which takes into account glucose and insulin levels during OGTT. Results: Glucose administration resulted in significant increases in insulin and glucose (p < 0.0001). There was, however, no change in RBP-4 concentrations (124.1 +/- 32 mg/ml at 0 minutes, 123 +/- 35 mg/ml at 60 minutes and 126.5 +/- 37.5 mg/ml at 120 minutes of OGTT, p = ns). All subjects in Study 2 achieved suppression of cortisol below 50 nmo/l. Dexamethasone administration resulted in an increase in fasting insulin (from 11.6 +/- 6.8 to 17.1 +/- 7.2 muU/ml; p = 0.003), and an increase in HOMA (from 2.73 +/- 1.74 to 4.02 +/- 2.27; p = 0.015), although without a significant change in RBP-4 levels (119 +/- 26.8 vs. 117.5 +/- 24.8 mg/ml, p = ns). RBP-4 correlated with fasting insulin (r = 0.40, p = 0.025), fasting glucose (r = 0.41, p = 0.02) and HOMA (r = 0.43, p = 0.015), but not with IRI (r = 0.19, p = 0.31). There was, however, only a moderate correlation between HOMA and IRI (r = 0.49 [r(2) = 0.24]; p = 0.006, Spearman rank correlation), while the best correlation was obtained between the product of glucose and insulin levels at 60 min of OGTT and IRI in a non-linear model (r = 0.94 [r(2) = 0.88]; p<0.00001). In subjects who received dexamethasone, a positive correlation between RBP-4 and HOMA (p = 0.01) was lost after two days of dexamethasone administration (p = 0.61). Conclusions: RBP-4 levels do not change during oral glucose tolerance test or after a dexamethasone-induced increase in insulin resistance. This implies that it is highly unlikely that RBP-4 is involved in short-term regulation of glucose homeostasis in humans and that it responds to short-term changes in insulin resistance. A moderate correlation between RBP-4 and some insulin resistance indices (HOMA) does not exclude the fact that RBP-4 might be one of many factors that can influence insulin sensitivity in humans.  相似文献   

12.
Infusion of carnitine has been observed to increase non-oxidative glucose disposal in several studies, but the effect of oral carnitine on glucose disposal in non-diabetic lean versus overweight/obese humans has not been examined. This study examined the effects of 14 days of l-carnitine l-tartrate oral supplementation (LC) on blood glucose, insulin, NEFA and GLP-1 responses to an oral glucose tolerance test (OGTT). Sixteen male participants were recruited [lean (n = 8) and overweight/obese (n = 8)]. After completing a submaximal predictive exercise test, participants were asked to attend three experimental sessions. These three visits were conducted in the morning to obtain fasting blood samples and to conduct 2 h OGTTs. The first visit was a familiarisation trial and the final two visits were conducted 2 weeks apart following 14 days of ingestion of placebo (PL, 3 g glucose/day) and then LC (3 g LC/day) ingested as two capsules 3×/day with meals. On each visit, blood was drawn at rest, at intervals during the OGTT for analysis of glucose, insulin, non-esterified fatty acids (NEFA) and total glucagon-like peptide-1 (GLP-1). Data obtained were used for determination of usual insulin sensitivity indices (HOMA-IR, AUC glucose, AUC insulin, 1st phase and 2nd phase β-cell function, estimated insulin sensitivity index and estimated metabolic clearance rate). Data were analysed using RMANOVA and post hoc comparisons where appropriate. There was a significant difference between groups for body mass, % fat and BMI with no significant difference in age and height. Mean (SEM) plasma glucose concentration at 30 min was significantly lower (p < 0.05) in the lean group on the LC trial compared with PL [8.71(0.70) PL; 7.32(0.36) LC; mmol/L]. Conversely, plasma glucose concentration was not different at 30 min, but was significantly higher at 90 min (p < 0.05) in the overweight/obese group on the LC trial [5.09(0.41) PL; 7.11(0.59) LC; mmol/L]. Estimated first phase and second phase β-cell function both tended to be greater following LC in the lean group only. No effects of LC were observed on NEFA or total GLP-1 response to OGTT. It is concluded that LC supplementation induces changes in blood glucose handling/disposal during an OGTT, which is not influenced by GLP-1. The glucose handling/disposal response to oral LC is different between lean and overweight/obese suggesting that further investigation is required. LC effects on gastric emptying and/or direct ‘insulin-like’ actions on tissues should be examined in larger samples of overweight/obese and lean participants, respectively.  相似文献   

13.
Objective: Glucagon‐like peptide‐1 (GLP‐1) (7–36) amide is a glucoregulatory hormone with insulinotropic and insulinomimetic actions. We determined whether the insulinomimetic effects of GLP‐1 are mediated through its principal metabolite, GLP‐1 (9–36) amide (GLP‐1m). Methods and Procedures: Glucose turnover during two, 2‐h, euglycemic clamps was measured in 12 lean and 12 obese (BMI <25 or >30 kg/m2) male and female subject volunteers with normal oral glucose tolerance test. Saline or GLP‐1m were infused from 0 to 60 min in each study. Additionally, seven lean and six obese subjects underwent a third clamp in which the GLP‐1 receptor (GLP‐1R) antagonist, exendin (9–39) amide was infused from ?60 to 60 min with GLP‐1m from 0 to 60 min. Results: No glucose infusion was required in lean subjects to sustain euglycemia (glucose clamp) during saline or GLP‐1m infusions. However, in obese subjects glucose infusion was necessary during GLP‐1m infusion alone in order to compensate for a marked (>50%) inhibition of hepatic glucose production (HGP). Plasma insulin levels remained constant in lean subjects but rose significantly in obese subjects after termination of the peptide infusions. During GLP‐1R blockade, infusion of glucose was immediately required upon starting GLP‐1m infusions in all subjects due to a more dramatic reduction in HGP, as well as a delayed and modest insulinotropic response. Discussion: We conclude that GLP‐1m potently inhibits HGP and is a weak insulinotropic agent. These properties are particularly apparent and pronounced in obese but only become apparent in lean subjects during GLP‐1 (7–36) receptor blockade. These previously unrecognized antidiabetogenic actions of GLP‐1m may have therapeutic usefulness.  相似文献   

14.
A novel oral form of salmon calcitonin (sCT) was recently demonstrated to improve both fasting and postprandial glycemic control and induce weight loss in diet-induced obese and insulin-resistant rats. To further explore the glucoregulatory efficacy of oral sCT, irrespective of obesity and metabolic dysfunction, the present study investigated the effect of chronic oral sCT treatment on fasting and postprandial glycemic control in male lean healthy rats. 20 male rats were divided equally into a control group receiving oral vehicle or an oral sCT (2?mg/kg) group. All rats were treated twice daily for 5 weeks. Body weight and food intake were monitored during the study period and fasting blood glucose, plasma insulin and insulin sensitivity were determined and an oral glucose tolerance test (OGTT) performed at study end. Compared with the vehicle group, rats receiving oral sCT had improved fasting glucose homeostasis and insulin resistance, as measured by homeostatic model assessment of insulin resistance index (HOMA-IR), with no change in body weight or fasting plasma insulin. In addition, the rats receiving oral sCT had markedly reduced glycemia and insulinemia during OGTT. This is the first report showing that chronic oral sCT treatment exerts a glucoregulatory action in lean healthy rats, irrespective of influencing body weight. Importantly, oral sCT seems to exert a dual treatment effect by improving fasting and postprandial glycemic control and insulin sensitivity. This and previous studies suggest oral sCT is a promising agent for the treatment of obesity-related insulin resistance and type 2 diabetes.  相似文献   

15.
The levels of glucose, immunoreactive insulin and C-peptide were studied in 13 obese patients and 10 control subjects, in basal conditions and after an oral glucose load (OGTT). The IRI and C-peptide levels were higher in the obese patients than in the controls either during fasting or during the OGTT. The C-peptide/IRI ratio decreased after the oral glucose load in both groups studied. However in the obese subjects the values for the C-peptide/IRI ratio were lower than those found in the controls during the same observation period. These results suggest the hypothesis that in the obese patients the high IRI levels which reflect an increased insulin secretion, are, at least in part, due to an early saturation of the hepatic degradation of insulin and/or to a decrease in the specific receptor sites normally present in the cell membranes.  相似文献   

16.
Objective: In healthy lean individuals, changes in insulin sensitivity occurring as a consequence of a 2‐day dexamethasone administration are compensated for by changes in insulin secretion, allowing glucose homeostasis to be maintained. This study evaluated the changes in glucose metabolism and insulin secretion induced by short‐term dexamethasone administration in obese women. Research Methods and Procedures: Eleven obese women with normal glucose tolerance were studied on two occasions, without and after 2 days of low‐dose dexamethasone administration. A two‐step hyperglycemic clamp (7.5 and 10 mM glucose) with 6, 6 2H2 glucose was used to assess insulin secretion and whole body glucose metabolism. Results were compared with those obtained in a group of eight lean women. Results: Without dexamethasone, obese women had higher plasma insulin concentrations in the fasting state, during the first phase of insulin secretion, and at the two hyperglycemic plateaus. However, they had normal whole body glucose metabolism compared with lean women, indicating adequate compensation. After dexamethasone, obese women had a 66% to 92% increase in plasma insulin concentrations but a 15.4% decrease in whole body glucose disposal. This contrasted with lean women, who had a 91% to 113% increase in plasma insulin concentrations, with no change in whole body glucose disposal. Discussion: Dexamethasone administration led to a significant reduction in whole body glucose disposal at fixed glycemia in obese but not lean women. This indicates that obese women are unable to increase their insulin secretion appropriately.  相似文献   

17.
The insulin response and the NEFA behaviour of 7 lean and 8 obese subjects with a flat response to an oral glucose tolerance test have been studied. A flat response has been defined as one in which the maximum glycemic increase and the area of increase does not exceed 32 mg% and 18 mg% respectively. The insulin response and the NEFA behaviour were similar both in lean and in obese subjects to controls with normal O.G.T.T. The glucose/I.R.I. ratios were increased. A possible physiopathological interpretation is proposed.  相似文献   

18.
Feinle C  Chapman IM  Wishart J  Horowitz M 《Peptides》2002,23(8):1491-1495
It has been suggested that obesity is associated with a reduced glucagon-like peptide-1 (GLP-1) response to oral carbohydrate, but not fat. The latter may, however, be attributable to changes in gastric emptying. We have assessed plasma GLP-1 levels in response to these infusions in lean and obese subjects. Seven healthy lean (body mass index (BMI), 19.1-24.6 kg/m(2)) and seven obese (BMI, 31.3-40.8 kg/m(2)) young men received an intraduodenal infusion of glucose and fat for 120 min (2.86 kcal/min) on two separate days. Blood samples for plasma GLP-1 were obtained at baseline and every 20 min during the infusion. Plasma GLP-1 increased during infusion of glucose and fat (P = 0.001), but there were no differences between lean and obese subjects, nor the two nutrients. We conclude that GLP-1 secretion in response to duodenal infusion of glucose and fat is not altered in obese subjects.  相似文献   

19.
Insulin resistance, impaired glucose tolerance, high circulating levels of free fatty acids (FFA), and postprandial hyperlipidemia are associated with the metabolic syndrome, which has been linked to increased risk of cardiovascular disease. We studied the metabolic responses to an oral glucose/triglyceride (TG) (1.7/2.0 g/kg lean body mass) load in three groups of conscious 7-h fasted Zucker rats: lean healthy controls, obese insulin-resistant/dyslipidemic controls, and obese rats treated with the dual peroxisome proliferator-activated receptor alpha/gamma agonist, tesaglitazar, 3 mumol.kg(-1).day(-1) for 4 wk. Untreated obese Zucker rats displayed marked insulin resistance, as well as glucose and lipid intolerance in response to the glucose/TG load. The 2-h postload area under the curve values were greater for glucose (+19%), insulin (+849%), FFA (+53%), and TG (+413%) compared with untreated lean controls. Treatment with tesaglitazar lowered fasting plasma glucose, improved glucose tolerance, substantially reduced fasting and postload insulin levels, and markedly lowered fasting TG and improved lipid tolerance. Fasting FFA were not affected, but postprandial FFA suppression was restored to levels seen in lean controls. Mechanisms of tesaglitazar-induced lowering of plasma TG were studied separately using the Triton WR1339 method. In anesthetized, 5-h fasted, obese Zucker rats, tesaglitazar reduced hepatic TG secretion by 47%, increased plasma TG clearance by 490%, and reduced very low-density lipoprotein (VLDL) apolipoprotein CIII content by 86%, compared with obese controls. In conclusion, the glucose/lipid tolerance test in obese Zucker rats appears to be a useful model of the metabolic syndrome that can be used to evaluate therapeutic effects on impaired postprandial glucose and lipid metabolism. The present work demonstrates that tesaglitazar ameliorates these abnormalities and enhances insulin sensitivity in this animal model.  相似文献   

20.
BACKGROUND: Ghrelin has been reported to be the natural ligand of growth hormone (GH) secretagogue receptor, and it is known that exogenous ghrelin administration strongly stimulates GH release in humans. However, the effects of endogenous ghrelin on GH secretion and changes in ghrelin levels during dynamic changes in GH levels are not well understood. METHODS: Therefore, we measured circulating acylated ghrelin concentrations during oral glucose tolerance tests (OGTTs) in patients with active acromegaly (AA, n = 9) and in age/sex/BMI-matched group A controls (n = 12), and during insulin tolerance testing (ITT) in patients with GH deficiency (GHD, n = 10) and in group B controls (n = 10). Plasma acylated ghrelin, serum GH, insulin and glucose levels were measured during each test. RESULTS: Fasting plasma ghrelin levels correlated negatively with serum insulin levels in both group A and B controls (r = -0.665; p < 0.05) but not in patients with AA or GHD. During OGTTs, circulating ghrelin levels decreased significantly with a nadir at 30 min in both patients with AA (p < 0.05) and group A controls (p < 0.01). Also, ITTs were followed by a significant decrease in circulating ghrelin levels with a nadir at 30 min in patients with GHD (p < 0.05) and in group B controls (p < 0.05). CONCLUSION: The results of the study show that at baseline acylated ghrelin levels do not differ with respect to the GH status (GH excess or GH deficiency) and, furthermore, the suppression of acylated ghrelin levels during OGTT or ITT is independent of the GH response to the tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号