首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct injection into the macronucleus of Paramecium tetraurelia of DNA molecules coding for the A-antigen leads to expression of the gene and autonomous replication. When injected into Paramecium primaurelia DNA from probably any origin, procaryote or eucaryote, can replicate as linear telomerized molecules and the number of copies maintained can be very high (up to 20000 copies). We present here evidence that if the injected linear DNA molecules harbour preexisting telomeres at both extremities they are protected from degradation, the number of DNA molecules maintained being 15- to 30-fold higher than if the molecules are injected without telomeres. Some of the injected molecules replicate as multimers, but, only when the fused ends are devoid of preexisting telomeric repeats.  相似文献   

2.
Paramecium tetraurelia can be transformed by microinjection of cloned serotype A gene sequences into the macronucleus. Transformants are detected by their ability to express serotype A surface antigen from the injected templates. After injection, the DNA is converted from a supercoiled form to a linear form by cleavage at nonrandom sites. The linear form appears to replicate autonomously as a unit-length molecule and is present in transformants at high copy number. The injected DNA is further processed by the addition of paramecium-type telomeric sequences to the termini of the linear DNA. To examine the fate of injected linear DNA molecules, plasmid pSA14SB DNA containing the A gene was cleaved into two linear pieces, a 14-kilobase (kb) piece containing the A gene and flanking sequences and a 2.2-kb piece consisting of the procaryotic vector. In transformants expressing the A gene, we observed that two linear DNA species were present which correspond to the two species injected. Both species had Paramecium telomerelike sequences added to their termini. For the 2.2-kb DNA, we show that the site of addition of the telomerelike sequences is directly at one terminus and within one nucleotide of the other terminus. These results indicate that injected procaryotic DNA is capable of autonomous replication in Paramecium macronuclei and that telomeric addition in the macronucleus does not require specific recognition sequences.  相似文献   

3.
Telomeric DNA at the ends of chromosomes consist of short, tandem repeat sequences. The telomeres of Paramecium tetraurelia are made up of variable repeats, whereas Paramecium caudatum telomeric repeats are largely invariant. To investigate variable repeat synthesis in P. tetraurelia, mutated telomerase RNA genes were expressed in vivo. We demonstrate that the P. caudatum telomerase RNA can participate in telomere synthesis when expressed in the P. tetraurelia macronucleus, despite 24% primary sequence divergence of the RNAs between the two species. De novo telomeric repeats from transformants indicate that P. tetraurelia telomerase fidelity is dramatically affected by template substitutions and that misincorporation at a single templating position is likely to account for the majority of P. tetraurelia telomeric DNA variability. Furthermore, we show that fidelity is not solely a function of the RNA moiety, as the P. caudatum telomerase RNA does not impart high fidelity to the chimeric enzyme.  相似文献   

4.
We show that bacteriophage lambda DNA fragments microinjected into the macronucleus of the ciliated protozoan Paramecium can replicate as unit-length linear molecules. These linear DNA molecules are substrates for the addition of Paramecium telomeres by an endogenous telomerase. The linear DNA pieces can exist at copy numbers much higher than that of typical endogenous macronuclear chromosomes. We show that the copy number of injected DNA many fissions after microinjection reflects that of the original input copy number, suggesting that active control of copy number does not occur. Instead, the results suggest that injected DNA is replicated once per cell division.  相似文献   

5.
During the formation of a new macronucleus in the ciliate Euplotes crassus, micronuclear chromosomes are reproducibly broken at approximately 10 000 sites. This chromosome fragmentation process is tightly coupled with de novo telomere synthesis by the telomerase ribonucleoprotein complex, generating short linear macronuclear DNA molecules. In this study, the sequences of 58 macronuclear DNA termini and eight regions of the micronuclear genome containing chromosome fragmentation/telomere addition sites were determined. Through a statistically based analysis of these data, along with previously published sequences, we have defined a 10 bp conserved sequence element (E-Cbs, 5'-HATTGAAaHH-3', H = A, C or T) near chromosome fragmentation sites. The E-Cbs typically resides within the DNA destined to form a macronuclear DNA molecule, but can also reside within flanking micronuclear DNA that is eliminated during macronuclear development. The location of the E-Cbs in macronuclear-destined versus flanking micronuclear DNA leads us to propose a model of chromosome fragmentation that involves a 6 bp staggered cut in the chromosome. The identification of adjacent macronuclear-destined sequences that overlap by 6 bp provides support for the model. Finally, our data provide evidence that telomerase is able to differentiate between newly generated ends that contain partial telomeric repeats and those that do not in vivo.  相似文献   

6.
Although most telomere repeat sequences are found at the ends of chromosomes, some telomeric repeat sequences are also found at intrachromosomal locations in mammalian cells. Several studies have found that these interstitial telomeric repeat sequences can promote chromosome instability in rodent cells, either spontaneously or following ionizing radiation. In the present study we describe the extensive cytogenetic analysis of three different human cell lines with plasmids containing telomeric repeat sequences integrated at interstitial sites. In two of these cell lines, Q18 and P8SX, instability has been detected in the chromosome containing the integrated plasmid, involving breakage/fusion/bridge cycles or amplification of the plasmid DNA, respectively. However, the data suggest that the instability observed is characteristic of the general instability in these cell lines and that the telomeric repeat sequences themselves are not responsible. Consistent with this interpretation, the chromosome containing an integrated plasmid with 500 bp of telomeric repeat sequences is highly stable in the third cell line, SNG28, which has a relatively stable genome. The stability of the chromosome containing the integrated plasmid sequences in SNG28 makes this an excellent cell line to study the effect of ionizing radiation on the stability of interstitial telomeric sequences in human cells.  相似文献   

7.
8.
Interstitial telomeric sequences (ITSs), telomere-like repeats at intrachromosomal sites, are common in mammals and consist of tandem repeats of the canonical telomeric repeat, TTAGGG, or a repeat similar to this. We report that the ITS in human chromosome region 22q11.2 is, in the sequenced genome database, 101 tandem repeats of the sequence TTAGGGAGG. Using the primed in situ labeling (PRINS) technique and primers against the canonical telomeric repeat (TTAGGG), we illuminated telomeric sites for all chromosomes and an ITS locus at 22q11.2. Using the TTAGGGAGG sequence, we designed PRINS primers that efficiently and specifically illuminate the 22q11.2 ITS locus without illuminating telomeric and other ITS loci. The 22q11.2 locus has more repeat units than other ITSs loci enabling an unprecedented high detection frequency for this interstitial telomere locus. The 22q11.2 is associated with hot spots for disease-related chromosome breaks for multiple disorders, such as DiGeorge syndrome and chronic myeloid leukemia. We describe our findings that the ITS at 22q11.2 is in the same area of, and proximal to the common rearrangement region of multiple disorders. We suggest that the ITS might be involved in DNA repair processes in this area to protect the chromosome from more serious damage.  相似文献   

9.
10.
The chromosomes of ciliates are fragmented at reproducible sites during the development of the polyploid somatic macronucleus, but the mechanisms involved appear to be quite diverse in different species. In Paramecium aurelia, the process is imprecise and results in de novo telomere addition at locally heterogeneous positions. To search for possible determinants of chromosome fragmentation, we have studied an ~21-kb fragmentation region from the germ line genome of P. primaurelia. The mapping and sequencing of alternative macronuclear versions of the region show that two distinct multicopy elements, a minisatellite and a degenerate transposon copy, are eliminated by an imprecise mechanism leading either to chromosome fragmentation and the formation of new telomeres or to the rejoining of flanking sequences. Heterogeneous internal deletions occur between short direct repeats containing TA dinucleotides. The complex rearrangement patterns produced vary slightly among genetically identical cell lines, show non-Mendelian inheritance during sexual reproduction, and can be experimentally modified by transformation of the maternal macronucleus with homologous sequences. These results suggest that chromosome fragmentation in Paramecium is the consequence of imprecise DNA elimination events that are distinct from the precise excision of single-copy internal eliminated sequences and that target multicopy germ line sequences by homology-dependent epigenetic mechanisms.  相似文献   

11.
J P Wen  C Eder    H J Lipps 《Nucleic acids research》1995,23(10):1704-1709
We describe the construction of a vector carrying the micronuclear versions of two macronuclear DNA molecules, one of which was modified by the insertion of a polylinker sequence. This vector was injected into the polytene chromosomes of the developing macronucleus of Stylonychia and its processing during further macronuclear development and its fate in the mature macronucleus were analyzed. In up to 30% of injected cells the modified macronuclear DNA sequence could be detected. While the internal eliminated sequences (IES) present in the macronuclear precursor DNA sequence are still retained in the mature macronucleus, the modified macronuclear DNA sequence is correctly cut out from the vector, telomeres are added de novo and it is stably retained in the macronucleus during vegetative growth of the cells. This vector system represents an experimental system that allows the identification of DNA sequences involved in the processing of macronuclear DNA sequences during macronuclear development.  相似文献   

12.
To investigate the developmentally programmed telomere addition that accompanies chromosome fragmentation during macronuclear differentiation in Tetrahymena thermophila, five representative telomeric regions from the macronucleus were cloned and characterized in detail. The sequences adjacent to the telomeric (C4A2:T2G4) repeats on these five macronuclear ends had no significant sequence homology or shared secondary structure. Two developmentally independent examples of one macronuclear telomere had a 5 base pair difference in the position of the junction between the telomeric repeats and the adjacent sequences. A telomere-adjacent sequence, in the form of a synthetic oligonucleotide, was unable to prime the addition of telomeric repeats in vitro. The implications of these results for the mechanisms underlying developmentally programmed chromosome fragmentation and telomere addition in Tetrahymena are discussed.  相似文献   

13.
The non-homologous end-joining (NHEJ) pathway is a mechanism to repair DNA double strand breaks, which can introduce mutations at repair sites. We constructed new cellular systems to specifically analyze sequence modifications occurring at the repair site. In particular, we looked for the presence of telomeric repeats at the repair junctions, since our previous work indicated that telomeric sequences could be inserted at break sites in germ-line cells during primate evolution. To induce specific DNA breaks, we used the I-SceI system of Saccharomyces cerevisiae or digestion with restriction enzymes. We isolated human and hamster cell lines containing the I-SceI target site integrated in a single chromosomal locus and we exposed the cells to a continuous expression of the I-SceI endonuclease gene. Additionally, we isolated human cell lines that expressed constitutively the I-SceI endonuclease and we introduced the target site on an episomal plasmid stably transfected into the cells. These strategies allowed us to recover repair junctions in which the I-SceI target site was modified at high frequency (100% in hamster cells and about 70% in human cells). Finally, we analyzed junctions produced on an episomal plasmid linearized by restriction enzymes. In all the systems studied, sequence analysis of individual repair junctions showed that deletions were the most frequent modifications, being present in more than 80% of the junctions. On the episomal plasmids, the average deletion length was greater than at intrachromosomal sites. Insertions of nucleotides or deletions associated with insertions were rare events. Junction organization suggested different mechanisms of formation. To check for the insertion of telomeric sequences, we screened plasmid libraries representing about 3.5 x 10(5) junctions with a telomeric repeat probe. No positive clones were detected, suggesting that the addition of telomeric sequences during double strand break repair in somatic cells in culture is either a very rare event or does not occur at all.  相似文献   

14.
The ciliate Tetrahymena thermophila contains a chromosomally integrated copy of the rRNA genes (rDNA) in its germinal (micronuclear) genome. These genes are excised from the chromosome through a process involving site-specific DNA breakage, become linear palindromic molecules with added telomeres, and are greatly amplified during development of the somatic nucleus (macronucleus). In this study, we cloned a 15-kilobase segment of the germ line DNA containing these genes and injected it into developing macronuclei of T. thermophila. Up to 11% of injected cells were transformed to the paromomycin-resistant phenotype specified by the injected DNA. Transformation efficiency was dependent on the developmental stages of the injected cells and the integrity of the injected DNA but not the DNA concentration or conformation. The injected DNA was apparently processed and amplified correctly to produce rDNA molecules with the expected linear palindromic structure which carried the appropriate physical markers. Thus, the 15-kilobase DNA contained all cis-acting sequences sufficient for the DNA-processing events leading to rDNA amplification in T. thermophila.  相似文献   

15.
The DNA of ciliated protozoa.   总被引:35,自引:0,他引:35       下载免费PDF全文
Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons.  相似文献   

16.
Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons.  相似文献   

17.
It has been previously shown that linear plasmids bearing Tetrahymena telomeric sequences are able to replicate autonomously in the filamentous fungus Podospora anserina (1). However, autonomous replication occurs in only 50-70% of the transformants, suggesting a defect in the recognition of the Tetrahymena telomeric template by the putative P. anserina telomerase so that only a fraction of entering DNA is stabilized into linear extrachromosomal molecules. We have cloned DNA sequences added to the Tetrahymena (T2G4)n ends of the linear plasmid. Nucleotide sequencing showed that these sequences are exclusively composed of T2AG3 repeat units. Hybridization experiments of Bal31 treated DNA showed that T2AG3 repeats are confined within 200 bp in chromosomal P. anserina telomeres. A new plasmid has been constructed so that after linearization, the terminal sequences contain T2AG3 repeats. This linear molecule transforms P. anserina with a high frequency (up to 1.75 x 10(4) transformants/micrograms), autonomous replication occurs in 100% of the transformants and the plasmid copy number is about 2-3 per nucleus. These results underscore the importance of the telomeric repeat nucleotide sequence for efficient recognition as functional telomeric DNA in vivo and provide the first step toward the development of an artificial chromosome cloning system for filamentous fungi.  相似文献   

18.
Hara T  Chida K 《Gene》2002,283(1-2):11-16
In Chinese hamster extended blocks of telomeric-like repeats were previously detected by in situ hybridization at the pericentromeric region of most chromosomes and short arrays were localized at several interstitial sites. In this work, we analyzed the molecular organization of internal telomeric sequences (ITs) in the Chinese hamster genome. In genomic transfers hybridized with a telomeric probe, multiple Bal31 insensitive fragments were detected. Most of the fragments ranged in size between less than 1 kb and more than 100 kb and some were polymorphic. Fluorescence in situ hybridization experiments on DNA fibers and on elongated chromosomes showed that the pericentromeric ITs are composed of extensive and essentially continuous arrays of telomeric-like sequences. We then isolated three genomic regions which contain short ITs. These ITs are localized at interstitial sites (3q13-15, 3q21-26, 1p26) and are composed of 29-126 bp of (TTAGGG)(n) repeats. A peculiar feature of all the three ITs is the AT richness of the flanking sequences. Since AT-rich DNA is known to be unstable and characteristic of several mammalian fragile sites, we propose that the three ITs were inserted at these sites during the repair of double strand breaks.  相似文献   

19.
A Baroin  A Prat    F Caron 《Nucleic acids research》1987,15(4):1717-1728
In Paramecium primaurelia, the macronuclear gene encoding the G surface protein is located near a telomere. In this study, multiple copies of this telomere have been isolated and the subtelomeric and telomeric regions of some of them have been sequenced. The telomeric sequences consist of tandem repeats of the hexanucleotides C4A2 or C3A3. We show that the location where these repeats are added, which we call the telomeric site, is variable within a 0.6-0.8-kb region. These results are discussed in relation with the formation of macronuclear DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号