首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
Many field studies have demonstrated that soil temperature explains most of the temporal variation in soil respiration (SR). However, there is increasing evidence to suggest that SR is also influenced by current, or recent, photosynthate. Accordingly, seasonal changes in SR nominally attributed to temperature may, in part, be due to seasonality in photosynthesis. Within a mixed coniferous–deciduous temperate forest, we measured SR and used the process model SECRETS to test whether seasonal changes in photosynthesis influence seasonal differences in SR. Measurements were made in six adjacent plots (from pure evergreen to pure deciduous) that exhibited a gradient in the seasonality of photosynthesis. Within all six plots, we found strong correlations between the basal rate of SR (BR; defined as the SR at 10°C) and modeled photosynthesis (i.e. gross primary productivity; GPP). Moreover, we observed larger seasonal changes in BR in those plots that exhibited larger seasonal changes in photosynthesis, as compared with plots with smaller changes in photosynthesis. This is relevant because estimates of the Q10 of SR (Q10 is the relative change in a process rate per temperature change of 10°C) typically assume a constant BR. Our results therefore support the hypothesis that differences in the apparent Q10 of SR (apparent Q10=Q10 derived from field measurements of SR and temperature) among studies may, in large part, be related to seasonal differences in photosynthesis. We suggest that variation in stand structure and species composition and, thus, in the photosynthetic signatures, induce different seasonal changes in BR via differences in the belowground supply of labile carbon. If these seasonal changes in BR are not properly accounted for, fitted apparent Q10 values may not express the temperature response of respiratory processes in the soil.  相似文献   

2.
Large seasonal changes in Q10 of soil respiration in a beech forest   总被引:1,自引:0,他引:1  
We analyzed one year of continuous soil respiration measurements to assess variations in the temperature sensitivity of soil respiration at a Danish beech forest. A single temperature function derived from all measurements across the year (Q10 = 4.2) was adequate for estimating the total annual soil respiration and its seasonal evolution. However, Q10's derived from weekly datasets ranged between three in summer (at a mean soil temperature of 14 °C) and 23 in winter (at 2 °C), indicating that the annual temperature function underestimated the synoptic variations in soil respiration during winter. These results highlight that empirical models should be parameterized at a time resolution similar to that required by the output of the model. If the objective of the model is to simulate the total annual soil respiration rate, annual parameterization suffices. If however, soil respiration needs to be simulated over time periods from days to weeks, as is the case when soil respiration is compared to total ecosystem respiration during synoptic weather patterns, more short‐term parameterization is required. Despite the higher wintertime Q10's, the absolute response of soil respiration to temperature was smaller in winter than in summer. This is mainly because in absolute numbers, the temperature sensitivity of soil respiration depends not only on Q10, but also on the rate of soil respiration, which is highly reduced in winter. Nonetheless, the Q10 of soil respiration in winter was larger than can be explained by the decreasing respiration rate only. Because the seasonal changes in Q10 were negatively correlated with temperature and positively correlated with soil moisture, they could also be related to changing temperature and/or soil moisture conditions.  相似文献   

3.
We examined the effects of forest stand age on soil respiration (SR) including the heterotrophic respiration (HR) and autotrophic respiration (AR) of two forest types. We measured soil respiration and partitioned the HR and AR components across three age classes ∼15, ∼25, and ∼35-year-old Pinus sylvestris var. mongolica (Mongolia pine) and Larix principis-rupprechtii (larch) in a forest-steppe ecotone, northern China (June 2006 to October 2009). We analyzed the relationship between seasonal dynamics of SR, HR, AR and soil temperature (ST), soil water content (SWC) and normalized difference vegetation index (NDVI, a plant greenness and net primary productivity indicator). Our results showed that ST and SWC were driving factors for the seasonal dynamics of SR rather than plant greenness, irrespective of stand age and forest type. For ∼15-year-old stands, the seasonal dynamics of both AR and HR were dependent on ST. Higher Q10 of HR compared with AR occurred in larch. However, in Mongolia pine a similar Q10 occurred between HR and AR. With stand age, Q10 of both HR and AR increased in larch. For Mongolia pine, Q10 of HR increased with stand age, but AR showed no significant relationship with ST. As stand age increased, HR was correlated with SWC in Mongolia pine, but for larch AR correlated with SWC. The dependence of AR on NDVI occurred in ∼35-year-old Mongolia pine. Our study demonstrated the importance of separating autotrophic and heterotrophic respiration components of SR when stimulating the response of soil carbon efflux to environmental changes. When estimating the response of autotrophic and heterotrophic respiration to environmental changes, the effect of forest type on age-related trends is required.  相似文献   

4.
In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µ mol m?2 s?1, ranging from 1.35 to 7.03 µmol m?2 s?1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.  相似文献   

5.
Aim Dry season deciduousness affects intra‐ and inter‐annual patterns of carbon, water and energy balance in seasonal tropical forests. Because it is affected by rainfall, temperature and solar radiation, deciduousness may be an indicator of the response of vegetation to climate change. Better understanding of how spatial patterns of deciduousness are affected by climate and other environmental gradients will improve the ability to predict responses to climate change. This study develops remote sensing methods for quantifying tropical forest deciduousness and examines the relationship between deciduousness and environmental factors in semi‐deciduous tropical forest. Location Central Panama. Methods I applied spectral mixture analysis (SMA) and the normalized difference vegetation index (NDVI) to Landsat images to predict deciduousness which was ground‐truthed with field observations of the percentage of overstorey deciduous trees. Using predicted deciduousness from SMA, patterns of deciduousness at three spatial scales were analysed. I determined how deciduousness varied spatially with rainfall and geological substrate. Results Both SMA and NDVI had strong correlations (r > 0.9) with field observations of deciduousness. On a landscape scale, deciduousness increased as rainfall decreased, but geological substrate altered this relationship. On some geological substrates, deciduousness was much greater than expected for a given rainfall total or showed a slight but significant increase with rainfall. At an intermediate spatial scale, there were highly deciduous patches from 3 to 250 ha in size embedded in non‐deciduous forest, which may have resulted from topography, soil variation or past land use. Main conclusions Dry season deciduousness can be accurately quantified using satellite images indicating that remote sensing can be a valuable tool for detecting change and understanding ecosystem processes in tropical forests from landscape to regional scales.  相似文献   

6.
为比较不同气候过渡区地带性森林土壤线虫群落结构和多样性,以南亚热带向中亚热带气候过渡区的石门台常绿阔叶林和北亚热带向暖温带气候过渡区的鸡公山落叶阔叶林为样地,探讨不同气候区土壤微食物网能流方式的差异。结果表明,石门台土壤线虫群落属数(S)、生物量(Biomass)、多样性指数(H')、丰富度指数(SR)、成熟度指数(MI)和结构指数(SI)在表层土壤(0~10 cm)均显著高于鸡公山。石门台的土壤线虫通路指数(NCR)均值高于0.5,而鸡公山的NCR均值小于0.5,说明前者土壤食物网可能偏向于细菌能流通道,而后者偏向于真菌能流通道,这也与食细菌线虫、食真菌线虫生物量的计算结果一致。可见线虫群落结构确实存在明显的南北差异,并较好地指示了土壤能流和养分循环状况。  相似文献   

7.
武夷山不同林龄甜槠林土壤呼吸特征及影响因素   总被引:1,自引:0,他引:1  
为揭示中亚热带常绿阔叶林群落优势种一甜槠天然林不同林龄林下土壤呼吸(Soil respiration,RS)差异及影响因素,采用LI-8100开路式土壤碳通量系统对武夷山自然保护区不同林龄(18、36、54、72 a)天然甜槠林进行了1年的野外原位测定。结果表明:(1)不同林龄甜槠林RS季节动态呈现明显的单峰趋势,林龄对冬季RS影响并不显著(P>0.05),秋季18 a甜槠林RS与其他3种林龄差异显著(P<0.05),林龄对土壤含水率的季节变化没有显著影响(P>0.05);(2)不同林龄甜槠林5 cm深土壤温度与RS拟合R2明显高于土壤含水率与RS拟合R2,随着林龄增大,RS温度敏感性指数Q10值呈上升趋势,依次为1.551、1.589、1.640、1.664,且54、72 a甜槠林RS温度敏感性指数Q10值显著高于18、36 a(P<0.05);(3)土壤含水率与5 cm深土壤温度共同解释了RS变异的86%—90.3%;0—60 cm土层根系生物量与5 cm深土壤温度共同解释了RS变异的88.3%—91.8%,由此可见,生物因子与非生物因子双因素拟合可以更好地解释不同林龄RS差异。在对未来森林植被土壤呼吸及碳汇功能进行研究时,应在考虑林龄及季节差异的基础上,加强对生物因子的测定。  相似文献   

8.
Vertical CO2 profiles (between 0.02 and 14.0 m) were studied in forest canopies of Pinus contorta, Populus tremuloides, and in a riparian forest with Acer negundo and Acer grandidentatum during two consecutive growing seasons. Profiles, measured continuously during 1- to 13-day periods in four to five stands differing in overstorey canopy area index (CAI < 4.5; including leaves, branches and stems), were well stratified, with highest [CO2] just above the forest floor. Canopy [CO2] profiles were influenced by stand structure (CAI, presence of understorey vegetation), and were highly dependent on vegetation type (deciduous and evergreen). A doubling of CAI in Acer spp. and P. tremuloides stands did not show an effect on upper canopy [CO2], when turbulent mixing was high. However, increasing understorey biomass in Acer spp. stands had a profound effect on lower canopy [CO2]. In open stands with a vigorous understorey layer, higher soil respiration rates were offset by increased understorey gas exchange, resulting in [CO2] below those of the convective boundary layer (CBL). Midday depletions up to 20 ppmv below CBL values could be frequently observed in deciduous canopies. In evergreen canopies, [CO2] stayed generally above the CBL background values, [CO2] profiles were more uniform, and gradients were smaller than in deciduous stands with similar CAI. Seasonal changes of canopy [CO2] reflected changes in soil respiration rates as well as plant phenology and gas exchange of both dominant tree and understorey vegetation. Seasonal patterns were less pronounced in evergreen than in deciduous forests.  相似文献   

9.
Wet tropical forest trees display a wide range of leaf phenology dynamics. However, the interrelation between deciduousness, water status, and leaf and stem characteristics have been poorly investigated compared with dry forests. We studied wet forest trees to answer the following questions: (1) do water regulation modes (iso/anisohydric behavior) of evergreen species differ from those found in deciduous species? (2) Does leaf water potential (ΨL) influences leaffall and emergence dynamics? (3) Are leaf and stem characteristics consistent across evergreen and deciduous trees? We evaluated vegetative phenology, ΨL, and leaf and stem characteristics of six evergreen and three deciduous species monthly for 2 yr. Species exhibited different leaffall and emergence dynamics, as well as different water regulation modes, independent of their deciduousness. Thus, the relationship between leaf phenology and water regulation behaviors appears to be a species‐specific property rather than a functional group attribute. ΨL had no direct influence on the dynamics of leaffall and/or emergence, indicating that this process is not modulated by water availability alone. Individual groups of evergreen and deciduous species could not be identified using principal component analysis (PCA), but a decoupling was observed in the leaf and stem economics spectra. The lack of an interrelation between deciduousness and iso/anisohydry, as well as the independence of leaf and stem trade‐offs, emphasizes that more systematic measurements of vegetative phenology and ecophysiological characteristics are necessary to advance our knowledge of leaf habit and water regulation behaviors based on the functional traits of wet forest plants.  相似文献   

10.
Studies on soil respiration in mountain forests are rather scarce compared to their broad distribution. Therefore, we investigated daily, seasonal and annual soil respiration rates in a mixed forest (Lägeren), located at about 700 m in the Swiss Jura mountains, during 2 years (2006 and 2007). Soil respiration (SR) was measured continuously with high temporal resolution (half-hourly) at one single point (SRautomated) and periodically with high spatial resolution (SRmanual) at 16 plots within the study site. Both, SRautomated and SRmanual showed a similar seasonal cycle. SR strongly depended on soil temperature in 2007 (R 2 = 0.82–0.92), but less so in 2006 (R 2 = 0.56–0.76) when SR was water limited during a summer drought. Including soil moisture improved the fit of the 2006 model significantly (R 2 = 0.78–0.97). Total annual SR for the study site was estimated as 869 g C m?2 year?1 for 2006 and as 907 g C m?2 year?1 for 2007 (uncertainty <10% at the 95% confidence interval, determined by bootstrapping). Selected environmental conditions were assessed in more detail: (1) Rapid, but contrasting changes of SR were found after summer rainfall. Depending on soil moisture at pre-rain conditions, summer rain could either cause a pulse of CO2 from the soil or an abrupt decrease of SRautomated due to water logging of soil pores. (2) Two contrasting winter seasons resulted in SR being about 60–70% (31.2–44.6 g C m?2) higher during a mild winter (2007) compared to a harsh winter (2006). (3) Analysing SR for selected periods on a diurnal scale revealed a counter-clockwise hysteresis with soil surface temperatures. This indication of a time-lagged response of SR to temperature was further supported by a very strong relationship (R 2 = 0.86–0.90) of SR to soil temperature with a time-lag of 2–4 h.  相似文献   

11.
Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity) function in ecosystem models. Q10 is usually treated as a constant of 2 in these models, although Q10 value of SR often decreases with increasing temperatures. It remains unclear whether a general temperature- dependent Q10 model of SR exists at biome and global scale. In this paper, we have compiled the long-term Q10 data of 38 SR studies ranging from the Boreal, Temperate, to Tropical/Sublropical biome on four continents. Our analysis indicated that the general temperature-dependent biome Q10 models of SR existed, especially in the Boreal and Temperate biomes. A single-exponential model was better than a simple linear model in fitting the average Q10 values at the biome scale. Average soil temperature is a better predictor of Q10 value than average air temperature in these models, especially in the Boreal biome. Soil temperature alone could explain about 50% of the Q10 variations in both the Boreal and Temperate biome single-exponential Q10 model. Q10 value of SR decreased with increasing soil temperature but at quite different rates among the three biome Q10 models. The k values (Q10 decay rate constants) were 0.09, 0.07, and 0.02/℃ in the Boreal, Temperate, and Tropical/Subtropical biome, respectively, suggesting that Q10 value is the most sensitive to soil temperature change in the Boreal biome, the second in the Temperate biome, and the least sensitive in the Tropical/ Subtropical biome. This also indirectly confirms that acclimation of SR in many soil warming experiments probably occurs. The k value in the "global" single-exponential Q10 model which combined both the Boreal and Temperate biome data set was 0.08/℃. However, the global general temperature-dependent Q10 model developed using the data sets of the three biomes is not adequate for predicting Q10 values of SR globally. The existence of the general temperature-dependent Q10 models of SR in the Boreal and Temperate biome has important implications for modeling SR, especially in the Boreal biome. More detail model runs are needed to exactly evaluate the impact of using a fixed Q10 vs a temperature-dependent Q10 on SR estimate in ecosystem models (e.g., TEM, Biome-BGC, and PnET).  相似文献   

12.
Trenching (Tr), root biomass regression (RR), and root excising (RE) methods were used to estimate the contribution of root (RR) and heterotrophic (HR) respiration to soil respiration (SR) in a cool-temperate deciduous forest in central Japan. The contribution ratios of RR to SR were 23 % (?16 to 46 %), 11 % (?19 to 61 %), and 115 % (20 to 393 %), as estimated by the Tr, RR, and RE methods, respectively. The contribution ratio showed clear seasonal variation with high values in summer for the Tr method, while they were undetectable for the RR and RE methods because of some methodological problems. These results suggest the Tr method is the best of the three methods used to estimate the contribution ratio of RR and HR to SR in the forest. Annual SR, RR, and HR rates, estimated by the Tr method, were 479, 369, 110 gC m?2 year?1, respectively. The seasonal variation of SR was mainly influenced by HR (77 %) throughout the year, while the influence of RR on SR was strongest in summer (46 %). This effect occurred because RR (Q 10 = 7.5) is more sensitive to temperature than HR (Q 10 = 3.2). Also, the contribution of fine RR to total RR was higher than that of coarse RR because of high respiratory activity (Q 10 and R 10) as well as the large biomass of fine roots. These results suggest that each component of SR responds differently to the same environmental factors and their relative influence on SR changes across the seasons.  相似文献   

13.
Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms), and type of vegetation, and these factors vary widely among the patch types within a landscape. We measured SR, Ts, Ms, and litter depth (LD) during the 1999 and 2000 growing seasons within six dominant patch types (mature northern hardwoods, young northern hardwoods, clear-cuts, open-canopy Jack pine barrens, mature Jack pine, and mature red pine) on a managed forest landscape in northern Wisconsin, USA. We compared SR among and within the patch types and derived empirically based models that relate SR to Ts, Ms, and LD. Increased levels of soil moisture and higher temperatures in June–September 1999 may have accounted for the up to 37% overall higher SR than in this same period in 2000. In 2000, SR and Ts values were lower, and the sites may have been experiencing slight water limitations, but in general Ts was a much more accurate predictor of SR during this year. Empirical predictions of SR within each patch type derived from continuous Ts measurements were in close agreement with measured values of SR during 2000, but eight of 22 of the simulated values were significantly different ( = 0.05) from the rates measured in 1999. The young hardwoods consistently had the highest SR, whereas the pine barrens had the lowest. Results from our field studies and empirical models can help land managers assess landscape responses to potential disturbances and climatic changes.  相似文献   

14.
Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0–10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long‐term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m?2 s?1, control: 2.34 ± 0.29 μmol m?2 s?1; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass‐specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long‐term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C‐rich calcareous temperate forest soils.  相似文献   

15.
The anthropogenic rise in atmospheric CO2 is expected to impact carbon (C) fluxes not only at ecosystem level but also at the global scale by altering C cycle processes in soils. At the Swiss Canopy Crane (SCC), we examined how 7 years of free air CO2 enrichment (FACE) affected soil CO2 dynamics in a ca. 100‐year‐old mixed deciduous forest. The use of 13C‐depleted CO2 for canopy enrichment allowed us to trace the flow of recently fixed C. In the 7th year of growth at ~550 ppm CO2, soil respiratory CO2 consisted of 39% labelled C. During the growing season, soil air CO2 concentration was significantly enhanced under CO2‐exposed trees. However, elevated CO2 failed to stimulate cumulative soil respiration (Rs) over the growing season. We found periodic reductions as well as increases in instantaneous rates of Rs in response to elevated CO2, depending on soil temperature and soil volumetric water content (VWC; significant three‐way interaction). During wet periods, soil water savings under CO2‐enriched trees led to excessive VWC (>45%) that suppressed Rs. Elevated CO2 stimulated Rs only when VWC was ≤40% and concurrent soil temperature was high (>15 °C). Seasonal Q10 estimates of Rs were significantly lower under elevated (Q10=3.30) compared with ambient CO2 (Q10=3.97). However, this effect disappeared when three consecutive sampling dates of extremely high VWC were disregarded. This suggests that elevated CO2 affected Q10 mainly indirectly through changes in VWC. Fine root respiration did not differ significantly between treatments but soil microbial biomass (Cmic) increased by 14% under elevated CO2 (marginally significant). Our findings do not indicate enhanced soil C emissions in such stands under future atmospheric CO2. It remains to be shown whether C losses via leaching of dissolved organic or inorganic C (DOC, DIC) help to balance the C budget in this forest.  相似文献   

16.
The stratified distribution of soil organic carbon (SOC) provides a potential means of eliminating the difference in soil background for understanding its response to ecological processes. We assessed the feasibility of SOC stratification ratio (SR) as an index to estimate the dynamics of SOC sequestration and soil quality during ecological restoration. SOC, total nitrogen, and available nitrogen contents were measured at restored sites containing three vegetation types with different stand ages and slope gradients, also at sites with three kinds of agricultural management on the hilly Loess Plateau, China. SR and SOC density (SOCD) showed a consistently significant trend of linear increase along the revegetation chronosequences. The proportion of the annual increase rates of SR to SOCD were approximately 1:15 and 1:5 for SR1 (0–5:5–10 cm) and SR2 (0–5:20–30 cm), indicating that SR of the shallow soil layers (0–10 cm) could estimate SOC accumulation to a depth of 30 cm. SRs significantly increased owing to the ecosystem restorations. Also, SRs could discriminate the difference in SOC sequestration and soil quality between vegetation types. SR, however, could not precisely indicate the variation of SOC sequestration and soil quality under different agricultural management. The study suggested that SR was an efficient indicator of the dynamics of SOC sequestration and soil quality, and an SR2 (0–5:20–30 cm) >2 indicated a distinct improvement of SOC sequestration and soil quality in ecological restoration on the hilly Loess Plateau.  相似文献   

17.
The microbial decomposition respiration of plant litter generates a major CO2 efflux from terrestrial ecosystems that plays a critical role in the regulation of carbon cycling on regional and global scales. However, the respiration from root litter decomposition and its sensitivity to temperature changes are unclear in current models of carbon turnover in forest soils. Thus, we examined seasonal changes in the temperature sensitivity and decomposition rates of fine root litter of two diameter classes (0–0.5 and 0.5–2.0 mm) of Quercus serrata and Ilex pedunculosa in a deciduous broad-leaved forest. During the study period, fine root litter of both diameter classes and species decreased approximately exponentially over time. The Q10 values of microbial respiration rates of root litter for the two classes were 1.59–3.31 and 1.28–6.27 for Q. serrata and 1.36–6.31 and 1.65–5.86 for I. pedunculosa. A significant difference in Q10 was observed between the diameter classes, indicating that root diameter represents the initial substrate quality, which may determine the magnitude of Q10 value of microbial respiration. Changes in these Q10 values were related to seasonal soil temperature patterns; the values were higher in winter than in summer. Moreover, seasonal variations in Q10 were larger during the 2-year decomposition period than the 1-year period. These results showed that the Q10 values of fine root litter of 0–0.5 and 0.5–2.0 mm have been shown to increase with lower temperatures and with the higher recalcitrance pool of the decomposed substrate during 2 years of decomposition. Thus, the temperature sensitivity of microbial respiration in root litter showed distinct patterns according to the decay period and season because of the temperature acclimation and adaptation of the microbial decomposer communities in root litter.  相似文献   

18.
Soil respiration is affected by vegetation and environmental conditions. The purpose of this study was to investigate the effect of vegetation type on soil respiration, temperature and water content, and their correlations on a small scale. We measured soil respiration rate (Rs) over a 3-year period at biweekly intervals in three plots in the eastern Loess Plateau of China, with the same soil texture but different vegetation types: pine forest, grassland, and shrub land. Simultaneously, soil temperature (Ts) at 10 cm depth and soil water content (Ws) within 10 cm depth were measured. The seasonal course of Rs and Ts showed a similar temporal variation in the three plots, with higher values in summer and autumn and lower values in winter and spring. No significant differences (P>0.05) were found between plots, except for Ws. The mean cumulative release of CO2 efflux from March to December was 962.5, 1027.5, and 1166.5 g C m? 2 a? 1 for plots 1, 2, and 3, respectively, with no significant difference between plots. The fitted exponential equations of Rs versus Ts from the 3-year data-set were significant (P < 0.05) with an R2 of 0.72, 0.64, and 0.72 for plots 1, 2, and 3, respectively. The calculated Q10 from the parameters of the fitted equation was 3.57, 3.52, and 3.61, and the R10 was 2.36, 2.03, and 2.37 μmol CO2 m? 2 s? 1 for plots 1, 2, and 3, respectively. Compared with the Ts, the correlations between Rs and Ws were not significant for the three plots. However, if the Ts was above 10°C, then their correlation was significant, and Ws had an impact on Rs. Four combined regression equations including two variables of Ts and Ws could be well established to model correlations between Rs and both Ts and Ws. Our study demonstrated that the exponential and power model fitted best and no significant different correlations of combined equations existed between the three plots. These results show that vegetation type had little impact on Rs, Ts, Ws, and their correlations, as well as on related parameters such as Q10 and R10. Therefore, while doing Rs research in a horizontal patchy vegetation conditions on a small area, the sampling location of measurements should focus on vertical dominant vegetation and ignore patch vegetation so as to reduce field work load.  相似文献   

19.
降雨量改变对常绿阔叶林干旱和湿润季节土壤呼吸的影响   总被引:1,自引:0,他引:1  
通过野外原位试验,研究降雨量改变对华西雨屏区常绿阔叶林干旱和湿润季节土壤呼吸速率的影响。采用LI-8100土壤碳通量分析系统(LI-COR Inc.,USA)测定干旱和湿润季节对照(CK)、增雨10%(LA)、增雨5%(TA)、减雨10%(LR)、减雨20%(MR)、减雨50%(HR)6个处理水平的土壤呼吸速率,并通过回归方程分析温度和湿度与土壤呼吸速率间的关系。结果表明:湿润季节土壤呼吸速率高于干旱季节,HR处理对干旱季节土壤呼吸速率影响较大,而LA处理对湿润季节土壤呼吸速率的影响较大。TA和LR处理使土壤呼吸的温度敏感性增加,而HR、LA和MR处理使土壤呼吸的温度敏感性降低,干旱季节Q10值高于湿润季节。各处理湿润季节土壤微生物量碳氮含量显著高于干旱季节,HR、MR和LA处理减少土壤微生物生物量碳、氮的含量,而TA和LR处理增加土壤微生物生物量碳、氮的含量。与湿润季节相比,干旱季节土壤水分对土壤呼吸速率的影响较大;而与土壤温度相比,土壤水分对土壤呼吸速率的影响较小。在降雨量改变的背景下,华西雨屏区常绿阔叶林无论是干旱还是湿润季节,适当增雨和减雨都会促进土壤呼吸速率,而较高量的增雨和减雨会抑制土壤呼吸速率。  相似文献   

20.
The basal respiration rate at 10°C (R10) and the temperature sensitivity of soil respiration (Q10) are two premier parameters in predicting the instantaneous rate of soil respiration at a given temperature. However, the mechanisms underlying the spatial variations in R10 and Q10 are not quite clear. R10 and Q10 were calculated using an exponential function with measured soil respiration and soil temperature for 11 mixed conifer-broadleaved forest stands and nine broadleaved forest stands at a catchment scale. The mean values of R10 were 1.83 µmol CO2 m−2 s−1 and 2.01 µmol CO2 m−2 s−1, the mean values of Q10 were 3.40 and 3.79, respectively, for mixed and broadleaved forest types. Forest type did not influence the two model parameters, but determinants of R10 and Q10 varied between the two forest types. In mixed forest stands, R10 decreased greatly with the ratio of coniferous to broadleaved tree species; whereas it sharply increased with the soil temperature range and the variations in soil organic carbon (SOC), and soil total nitrogen (TN). Q10 was positively correlated with the spatial variances of herb-layer carbon stock and soil bulk density, and negatively with soil C/N ratio. In broadleaved forest stands, R10 was markedly affected by basal area and the variations in shrub carbon stock and soil phosphorus (P) content; the value of Q10 largely depended on soil pH and the variations of SOC and TN. 51% of variations in both R10 and Q10 can be accounted for jointly by five biophysical variables, of which the variation in soil bulk density played an overwhelming role in determining the amplitude of variations in soil basal respiration rates in temperate forests. Overall, it was concluded that soil respiration of temperate forests was largely dependent on soil physical properties when temperature kept quite low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号