首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excision (BER) and single strand break repair (SSBR). Here, using conditional knockout strategies for LIG3 and concomitant inactivation of the LIG1 and LIG4 genes, we show that in DT40 cells LigIII efficiently supports semi-conservative DNA replication. Our observations demonstrate a high functional versatility for the evolutionary new LigIII in DNA replication and mitochondrial metabolism, and suggest the presence of an alternative pathway for Okazaki fragment ligation.  相似文献   

2.
Sung JS  Mosbaugh DW 《Biochemistry》2003,42(16):4613-4625
The rate, extent, and DNA synthesis patch size of base excision repair (BER) were measured using Escherichia coli GM31 cell-free extracts and a pGEM (form I) DNA substrate containing a site-specific uracil or ethenocytosine target. The rate of complete BER was stimulated (approximately 3-fold) by adding exogenous E. coli DNA ligase to the cell-free extract, whereas addition of E. coli Ung, Nfo, Fpg, or Pol I did not stimulate BER. Hence, DNA ligation was identified as the rate-limiting step in the E. coli BER pathway. The addition of exogenous DNA polymerase I caused modest inhibition of BER, which was overcome by concomitant addition of DNA ligase. Repair patch size determinations were performed to assess the distribution of DNA synthesis associated with both uracil- and ethenocytosine-initiated BER. During the early phase (0-5 min) of the BER reaction, the large majority of repair events resulted from short patch (1-nucleotide) DNA synthesis. However, during the late phase (>10 min) both short and long (2-20 nucleotide) patches were observed, with long patch BER progressively dominating the repair process. In addition, the patch size distribution was influenced by the ratio of DNA polymerase I to DNA ligase activity in the reaction. A novel mode of BER was identified that involved DNA synthesis tracts of >205 nucleotides in length and termed very-long patch BER. This BER process was dependent upon DNA polymerase I since very-long patch BER was inhibited by DNA polymerase I antibody and addition of excess DNA polymerase I reversed this inhibition.  相似文献   

3.
Nucleotide excision repair (NER) removes a variety of DNA lesions. Using a yeast cell-free repair system, we have analyzed the repair synthesis step of NER. NER was proficient in yeast mutant cell-free extracts lacking DNA polymerases (Pol) β, ζ or η. Base excision repair was also proficient without Polβ. Repair synthesis of NER was not affected by thermal inactivation of the temperature-sensitive mutant Polα (pol1-17), but was reduced after thermal inactivation of the temperature-sensitive mutant Polδ (pol3-1) or Pol (pol2-18). Residual repair synthesis was observed in pol3-1 and pol2-18 mutant extracts, suggesting a repair deficiency rather than a complete repair defect. Deficient NER in pol3-1 and pol2-18 mutant extracts was specifically complemented by purified yeast Polδ and Pol, respectively. Deleting the polymerase catalytic domain of Pol (pol2-16) also led to a deficient repair synthesis during NER, which was complemented by purified yeast Pol, but not by purified yeast Polη. These results suggest that efficient repair synthesis of yeast NER requires both Polδ and Pol in vitro, and that the low fidelity Polη is not accessible to repair synthesis during NER.  相似文献   

4.
Genetic studies have previously demonstrated that the Saccharomyces cerevisiae CDC9 gene product, which is functionally homologous to mammalian DNA ligase I, is required for DNA replication and is also involved in DNA repair and genetic recombination. In the present study we have purified the yeast enzyme. When measured under denaturing conditions, Cdc9 protein has a polypeptide molecular mass of 87 kDa. The native form of the enzyme is an 80-kDa asymmetric monomer. Both estimates are in good agreement with the M(r) = 84,406 predicted from the translated sequence of the CDC9 gene. Cdc9 DNA ligase acts via the same basic reaction mechanism employed by all known ATP-dependent DNA ligases. The catalytic functions reside in a 70-kDa C-terminal domain that is conserved in mammalian DNA ligase I and in Cdc17 DNA ligase from Schizosaccharomyces pombe. The ATP analog ATP alpha S inhibits the ligation reaction, although Cdc9 protein does form an enzyme-thioadenylate intermediate. Since Cdc9 DNA ligase exhibited the same substrate specificity as mammalian DNA ligase I, this enzyme can be considered to be the DNA ligase I of S. cerevisiae. There is genetic evidence suggesting that DNA ligase may be directly involved in error-prone DNA repair. We examined the ability of Cdc9 DNA ligase to join nicks with mismatches at the termini. Mismatches at the 5' termini of nicks had very little effect on ligation, whereas mismatches opposite a purine at 3' termini inhibited DNA ligation. The joining of DNA molecules with mismatched termini by DNA ligase may be responsible for the generation of mutations.  相似文献   

5.
Xie Z  Liu S  Zhang Y  Wang Z 《Nucleic acids research》2004,32(20):5981-5990
Nucleotide excision repair (NER) removes many different types of DNA lesions. Most NER proteins are indispensable for repair. In contrast, the yeast Rad23 represents a class of accessory NER proteins, without which NER activity is reduced but not eliminated. In mammals, the complex of HR23B (Rad23 homolog) and XPC (yeast Rad4 homolog) has been suggested to function in the damage recognition step of NER. However, the precise function of Rad23 or HR23B in NER remains unknown. Recently, it was suggested that the primary function of RAD23 protein in NER is its stabilization of XPC protein. Here, we tested the significance of Rad23-mediated Rad4 stabilization in NER, and analyzed the repair and biochemical activities of purified yeast Rad23 protein. Cellular Rad4 was indeed stabilized by Rad23 in the absence of DNA damage. Persistent overexpression of Rad4 in rad23 mutant cells, however, largely failed to complement the ultraviolet sensitivity of the mutant. Consistently, deficient NER in rad23 mutant cell extracts could not be complemented by purified Rad4 protein in vitro. In contrast, partial complementation was observed with purified Rad23 protein. Specific complementation to the level of wild-type repair was achieved by adding purified Rad23 together with small amounts of Rad4 protein to rad23 mutant cell extracts. Purified Rad23 protein was unable to bind to DNA, but stimulated the binding activity of purified Rad4 protein to N-acetyl-2-aminofluorene-damaged DNA. These results support two roles of Rad23 protein in NER: (i) its direct participation in the repair biochemistry, possibly due to its stimulatory activity on Rad4-mediated damage binding/recognition; and (ii) its stabilization of cellular Rad4 protein.  相似文献   

6.
XRCC1 is a scaffold protein that interacts with several DNA repair proteins and plays a critical role in DNA base excision repair (BER). XRCC1 protein is in a tight complex with DNA ligase IIIα (Lig III) and this complex is involved in the ligation step of both BER and repair of DNA single strand breaks. The majority of XRCC1 has previously been demonstrated to exist in a phosphorylated form and cells containing mutant XRCC1, that is unable to be phosphorylated, display a reduced rate of single strand break repair. Here, in an unbiased assay, we demonstrate that the cytoplasmic form of the casein kinase 2 (CK2) protein is the major protein kinase activity involved in phosphorylation of XRCC1 in human cell extracts and that XRCC1 phosphorylation is required for XRCC1-Lig III complex stability. We demonstrate that XRCC1-Lig III complex containing mutant XRCC1, in which CK2 phosphorylation sites have been mutated, is unstable. We also find that a knockdown of CK2 by siRNA results in both reduced XRCC1 phosphorylation and stability, which also leads to a reduced amount of Lig III and accumulation of DNA strand breaks. We therefore propose that CK2 plays an important role in DNA repair by contributing to the stability of XRCC1-Lig III complex.  相似文献   

7.
Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.  相似文献   

8.
Bifunctional alkylating agents are used in tumor chemotherapy to induce the death of malignant cells through blockage of DNA replication. Nitrogen mustards are commonly used chemotherapeutic agents that can bind mono- or bifunctionally to guanines in DNA. Mustard HN1 is considered a monofunctional analog of bifunctional mustard HN2 (mechlorethamine). Escherichia coli K12 mutant strains deficient in nucleotide excision repair (NER) or base excision repair (BER) were submitted to increasing concentrations of HN2 or HN1, and the results revealed that damage induced by each chemical demands different DNA repair pathways. Damage induced by HN2 demands the activity of NER with a minor requirement of the BER pathway, while HN1 damage repair depends on BER action, without any requirement of NER function. Taken together, our data suggest that HN1 and HN2 seem to induce different types of damage, since their repair depends on distinct pathways in E. coli.  相似文献   

9.
Wong HK  Kim D  Hogue BA  McNeill DR  Wilson DM 《Biochemistry》2005,44(43):14335-14343
Base excision repair (BER) is the major corrective pathway for most spontaneous, oxidative, and alkylation DNA base and sugar damage. X-ray cross-complementing 1 (XRCC1) has been suggested to function at nearly every step of this repair process, primarily through direct protein-protein interactions. Using whole cell extract (WCE) repair assays and DNA damage measurement techniques, we examined systematically the quantitative contribution of XRCC1 to specific biochemical steps of BER and single-strand break repair (SSBR). Our studies reveal that XRCC1-deficient Chinese hamster ovary WCEs exhibit normal base excision activity for 8-oxoguanine (8-OH-dG), 5-hydroxycytosine, ethenoadenine, and uracil lesions. Moreover, XRCC1 mutant EM9 cells possess steady-state levels of endogenous 8-OH-dG base damage similar to those of their wild-type counterparts. Abasic site incision activity was found to be normal in XRCC1-deficient cell extracts, as were the levels of abasic sites in isolated chromosomal DNA from mutant cells. While one- and five-nucleotide gap filling was not affected by XRCC1 status, a significant approximately 2-4-fold reduction in nick ligation activity was observed in EM9 WCEs. Our results herein suggest that the primary biochemical defect associated with XRCC1 deficiency is in the ligation step of BER/SSBR, and that XRCC1 plays no significant role in endogenous base damage and abasic site repair, or in promoting the polymerase gap-filling step.  相似文献   

10.
Salles B  Rodrigo G  Li RY  Calsou P 《Biochimie》1999,81(1-2):53-58
The development of in vitro repair assays with human cell-free extracts led to new insights on the mechanism of excision of DNA damage which consists of incision/excision and repair synthesis/ligation. We have adapted the repair synthesis reaction with cells extracts incubated with damaged plasmid DNA performed in liquid phase to solid phase by DNA adsorption into microplate wells. Since cells extracts are repair competent in base excision and nucleotide excision repair, all types of substrate DNA lesions were detected with chemiluminescence measurement after incorporation of biotin-deoxynucleotide during the repair synthesis step. Derivatives of our initial 3D-assay (DNA damage detection) have been set up to: i) screen antioxidative compounds and NER inhibitors; ii) capture genomic DNA (3D(Cell)-assay) that allows detection of alkylated base and consequently determines the kinetics of the cellular repair; and iii) immunodetect the repair proteins in an ELISA reaction (3D(Rec)-assay). The 3D derived assays are presented and discussed.  相似文献   

11.
DNA lesions arise from many endogenous and environmental agents, and such lesions can promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5′-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER.  相似文献   

12.
The repair pathways involved in the removal of thymine glycol (TG) from DNA by human cell extracts have been examined. Closed circular DNA constructs containing a single TG at a defined site were used as substrates to determine the patch size generated after in vitro repair by cell extracts. Restriction analysis of the repair incorporation in the vicinity of the lesion indicated that the majority of TG was repaired through the base excision repair (BER) pathways. Repair incorporation 5' to the lesion, characteristic for the nucleotide excision repair pathway, was not found. More than 80% of the TG repair was accomplished by the single-nucleotide repair mechanism, and the remaining TGs were removed by the long patch BER pathway. We also analyzed the role of the xeroderma pigmentosum, complementation group G (XPG) protein in the excision step of BER. Cell extracts deficient in XPG protein had an average 25% reduction in TG incision. These data show that BER is the primary pathway for repair of TG in DNA and that XPG protein may be involved in repair of TG as an accessory factor.  相似文献   

13.
Alternative excision repair (AER) is a category of excision repair initiated by a single nick, made by an endonuclease, near the site of DNA damage, and followed by excision of the damaged DNA, repair synthesis, and ligation. The ultraviolet (UV) damage endonuclease in fungi and bacteria introduces a nick immediately 5′ to various types of UV damage and initiates its excision repair that is independent of nucleotide excision repair (NER). Endo IV-type apurinic/apyrimidinic (AP) endonucleases from Escherichia coli and yeast and human Exo III-type AP endonuclease APEX1 introduce a nick directly and immediately 5′ to various types of oxidative base damage besides the AP site, initiating excision repair. Another endonuclease, endonuclease V from bacteria to humans, binds deaminated bases and cleaves the phosphodiester bond located 1 nucleotide 3′ of the base, leading to excision repair. A single-strand break in DNA is one of the most frequent types of DNA damage within cells and is repaired efficiently. AER makes use of such repair capability of single-strand breaks, removes DNA damage, and has an important role in complementing BER and NER.NER and base excision repair (BER) are the major excision repair pathways present in almost all organisms. In NER, dual incisions are introduced, the damaged DNA between the incised sites is then removed, and DNA synthesis fills the single-stranded gap, followed by ligation. In BER, an AP site, formed by depurination or created by a base damage-specific DNA glycosylase, is recognized by an AP endonuclease that introduces a nick immediately 5′ to the AP site, followed by repair synthesis, removal of the AP site, and final ligation. Besides these two fundamental excision repair systems, investigators have found another category of excision repair—AER—an example of which is the excision repair of UV damage, initiated by an endonuclease called UV damage endonuclease (UVDE). UVDE introduces a single nick immediately 5′ to various types of UV lesions as well as other types of base damage, and this nick leads to the removal of the lesions by an AER process designated as UVDE-mediated excision repair (UVER or UVDR). Genetic analysis in Schizosaccharomyces pombe indicates that UVER provides cells with an extremely rapid removal of UV lesions, which is important for cells exposed to UV in their growing phase.Endo IV–type AP endonucleases from Escherichia coli and budding yeast and the Exo III–type human AP endonuclease APEX1 are able to introduce a nick at various types of oxidative base damage and initiate a form of excision repair that has been designated as nucleotide incision repair (NIR). Endonuclease V (ENDOV) from bacteria to humans recognizes deaminated bases, introduces a nick 1 nucleotide 3′ of the base, and leads to excision repair initiated by the nick. These endonucleases introduce a single nick near the DNA-damage site, leaving 3′-OH termini, and initiate repair of both the DNA damage and the nick. The mechanisms of AER may be similar to those of single-strand break (SSB) repair or BER except for the initial nicking process. However, how DNA damage is recognized determines the repair process within the cell. This article discusses the mechanisms and functional roles of AER. We begin with AER of UV damage, because genetic analysis has shown functional differences between this AER and NER in S. pombe.  相似文献   

14.
Cellular metabolic processes constantly generate reactive species that damage DNA. To counteract this relentless assault, cells have developed multiple pathways to resist damage. The base excision repair (BER) and nucleotide excision repair (NER) pathways remove damage whereas the recombination (REC) and postreplication repair (PRR) pathways bypass the damage, allowing deferred removal. Genetic studies in yeast indicate that these pathways can process a common spontaneous lesion(s), with mutational inactivation of any pathway increasing the burden on the remaining pathways. In this study, we examine the consequences of simultaneously compromising three or more of these pathways. Although the presence of a functional BER pathway alone is able to support haploid growth, retention of the NER, REC, or PRR pathway alone is not, indicating that BER is the key damage resistance pathway in yeast and may be responsible for the removal of the majority of either spontaneous DNA damage or specifically those lesions that are potentially lethal. In the diploid state, functional BER, NER, or REC alone can support growth, while PRR alone is insufficient for growth. In diploids, the presence of PRR alone may confer a lethal mutation load or, alternatively, PRR alone may be insufficient to deal with potentially lethal, replication-blocking lesions.  相似文献   

15.
DNA ligases catalyse the joining of DNA single- and double-strand breaks. Saccharomyces cerevisiae Cdc9p is a homologue of mammalian DNA ligase I and is required for DNA replication, recombination and single-strand break repair. The other yeast ligase, Lig4p/Dnl4p, is a homologue of mammalian DNA ligase IV, and functions in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair [1] [2] [3] [4]. Lig4p interacts with Lif1p, the yeast homologue of the human ligase IV-associated protein, XRCC4 [5]. This interaction takes place through the carboxy-terminal domain of Lig4p and is required for Lig4p stability. We show that the carboxy-terminal interaction region of Lig4p is necessary for NHEJ but, when fused to Cdc9p, is insufficient to confer NHEJ function to Cdc9p. Also, Lif1p stimulates the in vitro catalytic activity of Lig4p in adenylation and DNA ligation. Nevertheless, Lig4p is inactive in NHEJ in the absence of Lif1p in vivo, even when Lig4p is stably expressed. We show that Lif1p binds DNA in vitro and, through in vivo cross-linking and chromatin immuno precipitation assays, demonstrate that it targets Lig4p to chromosomal DNA double-strand breaks. Furthermore, this targeting requires another key NHEJ protein, Ku.  相似文献   

16.
An alternative eukaryotic DNA excision repair pathway.   总被引:7,自引:2,他引:5       下载免费PDF全文
DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.  相似文献   

17.
Nucleotide excision repair (NER) is the primary mechanism for the removal of many lesions from DNA. This repair process can be broadly divided in two stages: first, incision at damaged sites and second, synthesis of new DNA to replace the oligonucleotide removed by excision. In order to dissect the repair mechanism, we have recently devised a method to analyze the incision reaction in vitro in the absence of repair synthesis (1). Damage-specific incisions take place in a repair reaction in which mammalian cell-free extracts are mixed with undamaged and damaged plasmids. Most of the incision events are accompanied by excision. Using this assay, we investigated here various parameters that specifically affect the level of damage-dependent incision activity by cell-free extracts in vitro. We have defined optimal conditions for the reaction and determined the kinetics of the incision with cell-free extracts from human cells. We present direct evidence that the incision step of NER is ATP-dependent. In addition, we observe that Mn2+ but no other divalent cation can substitute for Mg2+ in the incision reaction.  相似文献   

18.
X-ray repair cross-complementing protein-1 (XRCC1)-deficient cells are sensitive to DNA damaging agents and have delayed processing of DNA base lesions. In support of its role in base excision repair, it was found that XRCC1 forms a tight complex with DNA ligase IIIα and also interacts with DNA polymerase β (Pol β) and other base excision repair (BER) proteins. We have isolated wild-type XRCC1–DNA ligase IIIα heterodimer and mutated XRCC1–DNA ligase IIIα complex that does not interact with Pol β and tested their activities in BER reconstituted with human purified proteins. We find that a point mutation in the XRCC1 protein which disrupts functional interaction with Pol β, affected the ligation efficiency of the mutant XRCC1–DNA ligase IIIα heterodimer in reconstituted BER reactions. We also compared sensitivity to hydrogen peroxide between wild-type CHO-9 cells, XRCC1-deficient EM-C11 cells and EM-C11 cells transfected with empty plasmid vector or with plasmid vector carrying wild-type or mutant XRCC1 gene and find that the plasmid encoding XRCC1 protein, that does not interact with Pol β has reduced ability to rescue the hydrogen peroxide sensitivity of XRCC1- deficient cells. These data suggest an important role for the XRCC1–Pol β interaction for coordinating the efficiency of the BER process.  相似文献   

19.
cdc9, a temperature-sensitive mutant defective in polynucleotide deoxyribonucleic acid (DNA) ligase activity, accumulates low-molecular-weight DNA fragments (as measured by sedimentation of DNA in alkaline sucrose gradients) at the nonpermissive temperature after irradiation with ultraviolet light. This phenotype of cdc9 is a sensitive indicator of successful incision during excision repair of dimers. In strains containing excision-defective mutations in any of nine genes in combination with the cdc9 mutation, the absence of low-molecular-weight DNA at the nonpermissive temperature after ultraviolet treatment suggests that these mutants are incision defective, whereas the presence of low-molecular-weight DNA indicates that the mutants are defective in a step after incision. With rad1, rad2, rad3, rad4, and rad10 mutants, the molecular weight of the DNA remained unchanged after ultraviolet irradiation and incubation at the restrictive temperature, despite the presence of the cdc9 mutation; these mutants are therefore incision defective. Low-molecular-weight DNA was observed in rad14 cdc9 and rad16 cdc9 strains. With the rad16 strain, the accumulation of low-molecular-weight DNA correlated with the amount of excision taking place, whereas in the rad14 mutant strain, no evidence of dimer removal was obtained. Therefore, rad14 is likely to be defective in a step after incision.  相似文献   

20.
Mammalian cells repair apurinic/apyrimidinic (AP) sites in DNA by two distinct pathways: a polymerase beta (pol beta)-dependent, short- (one nucleotide) patch base excision repair (BER) pathway, which is the major route, and a PCNA-dependent, long- (several nucleotide) patch BER pathway. The ability of a cell-free lysate prepared from asexual Plasmodium falciparum malaria parasites to remove uracil and repair AP sites in a variety of DNA substrates was investigated. We found that the lysate contained uracil DNA glycosylase, AP endonuclease, DNA polymerase, flap endonuclease, and DNA ligase activities. This cell-free lysate effectively repaired a regular or synthetic AP site on a covalently closed circular (ccc) duplex plasmid molecule or a long (382 bp), linear duplex DNA fragment, or a regular or reduced AP site in short (28 bp), duplex oligonucleotides. Repair of the AP sites in the various DNA substrates involved a long-patch BER pathway. This biology is different from mammalian cells, yeast, Xenopus, and Escherichia coli, which predominantly repair AP sites by a one-nucleotide patch BER pathway. The apparent absence of a short-patch BER pathway in P. falciparum may provide opportunities to develop antimalarial chemotherapeutic strategies for selectively damaging the parasites in vivo and will allow the characterization of the long-patch BER pathway without having to knock-out or inactivate a short-patch BER pathway, which is necessary in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号