首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

2.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

3.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

4.
An investigation of a series of single replacement analogues of PrRP-(19-31)-peptide has shown that good functional activity was retained when Phe31 was replaced with His(Bzl), Phe(4Cl), Nle, Trp, Cys(Bzl) or Glu(OBzl); when Val28 or Ile25 was replaced with Phg; when Gly24 was replaced with D-Ala, L-Ala, Pro or Sar; when Ser22 was replaced with Gly and when Ala21 was replaced with Thr or MeAla. The results confirm that the functionally important residues are located within the carboxyl terminal segment, -Ile-Arg-Pro-Val-Gly-Arg-Phe-NH2.  相似文献   

5.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in transmembrane domain VIII and flanking hydrophilic loops (from Gln 256 to Lys 289) was replaced individually with Cys. Of the 34 single-Cys mutants, 26 accumulate lactose to > 70% of the steady state observed with C-less permease, and an additional 7 mutants (Gly 262-->Cys, Gly 268-->Cys, Asn 272-->Cys, Pro 280-->Cys, Asn 284-->Cys, Gly 287-->Cys, and Gly 288-->Cys) exhibit lower but significant levels of accumulation (30-50% of C-less). As expected (Ujwal ML, Sahin-Tóth M, Persson B, Kaback HR, 1994, Mol Membr Biol 1:9-16), Cys replacement for Glu 269 abolishes lactose transport. Immunoblot analysis reveals that the mutants are inserted into the membrane at concentrations comparable to C-less permease, with the exceptions of mutants Pro 280-->Cys, Gly 287-->Cys, and Lys 289-->Cys, which are expressed at reduced levels. The transport activity of the mutants is inhibited by N-ethylmaleimide (NEM) in a highly specific manner. Most of the mutants are insensitive, but Cys replacements render the permease sensitive to inactivation by NEM at positions that cluster in manner indicating that they are on one face of an alpha-helix (Gly 262-->Cys, Val 264-->Cys, Thr 265-->Cys, Gly 268-->Cys. Asn 272-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, and Ala 279-->Cys). The results indicate that transmembrane domain VIII is in alpha-helical conformation and demonstrate that, although only a single residue in this region of the permease is essential for activity (Glu 269), one face of the helix plays an important role in the transport mechanism. More direct evidence for the latter conclusion is provided in the companion paper (Frillingos S. Kaback HR, 1997, Protein Sci 6:438-443) by using site-directed sulfhydryl modification of the Cys-replacement mutants in situ.  相似文献   

6.
Selective proteolysis of the polypeptide cardiostimulant anthopleurin-A by trypsin introduces a single break in the polypeptide backbone on the C-terminal side of Arg14. The resulting derivative is devoid of any cardiostimulant activity. The structural changes which accompany this loss of activity have been examined by one- and two-dimensional 1H-NMR spectroscopy. It is shown that the overall backbone folding of anthopleurin-A is conserved on digestion, with some structural changes occurring for residues which are adjacent to the site of cleavage by trypsin. Thus, although previous NMR studies on anthopleurin-A indicate that the region surrounding Arg14 is devoid of any ordered structure, it appears that some degree of structural integrity is required to allow the essential side chains to adopt the conformation necessary to produce a cardiostimulant effect.  相似文献   

7.
The disordered mobile loop L2 of the Escherichia coli RecA protein is known to play a central role in DNA binding and pairing. To investigate the local chemical environment in relation to function we performed saturation mutagenesis of the loop L2 region (amino acid positions 193-212) using a site-directed mutagenesis procedure, and determined the recombinational proficiency of the 380 mutants using genetic assays for homologous recombination and recombinational repair. Residues Asn193, Gln194, Arg196, Glu207, Thr209, Gly211, and Gly212 were identified as stringently required for recombinational events in bacterial cells. In addition, our findings suggest the involvement of loop L2 in the ATPase activity of RecA, and a role for residues Gln194, Arg196, Lys198 and Thr209 in the DNA-dependent hydrolysis of ATP. Finally, since 20 residue peptides that comprise this region can pair homologous DNAs by forming filamentous beta-structures, we propose how the information from the mutant analysis might facilitate the use of a simplified amino acid alphabet to design beta-structure forming L2 peptides with improved RecA-like activities.  相似文献   

8.
Anthopleurin-B, the most potent peptide heart stimulant from the sea anemone Anthopleura xanthogrammica, was shown to exist as a single polypeptide chain consisting of 49 amino acid residues. The sequence of the peptide was shown to be: Gly-Val-Pro-Cys-Leu-Cys-Asp-Ser-Asp-Gly- Pro-Arg-Pro-Arg-Gly-Asn-Thr-Leu-Ser-Gly-Ile-Leu-Trp-Phe-Tyr-Pro-Ser- Gly-Cys-Pro-Ser-Gly-Trp-His-Asn-Cys-Lys-Ala-His-Gly-Pro-Asn-Ile-Gly- Trp-Cys-Cys-Lys-Lys. The carboxymethylcysteine derivative, tryptic and chymotryptic peptides (obtained from the derivative and separated by high performance liquid chromatography) were sequenced by manual Edman degradation. Although six carboxymethylcysteine residues were formed by reduction and alkylation of the polypeptide, no cysteine residues were detectable in the native protein, indicating that there are three cystine residues in anthopleurin-B. The amino acid sequence differs in 7 places from anthopleurin-A: at residues 3 (Pro for Ser), 12 (Arg for Ser), 13 (Pro for Val), 21 (Ile for Thr), 24 (Phe for Leu), 42 (Asn for Thr), and 49 (Lys for Gln). These differences are important since anthopleurin-B is about a 12.5-fold better heart stimulant than anthopleurin-A from A. xanthogrammica, anthopleurin-C from Anthopleura elegantissima, and toxin II from Anemonia sulcata.  相似文献   

9.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

10.
The GTP-binding p21 protein encoded by the ras-oncogene can be activated to cause malignant transformation of cells by substitution of a single amino acid at critical positions along the polypeptide chain. Substitution of any non-cyclic L-amino acid for Gly 12 in the normal protein results in a transforming protein. This substitution occurs in a hydrophobic sequence (residues 6-15) which is known to be involved in binding the phosphate moities of GTP (and GDP). We find, using conformational energy calculations, that the 6-15 segment of the normal protein (with Gly 12) adopts structures that contain a bend at residues 11 and 12 with the Gly in the D* conformation, not allowed energetically for L-amino acids. Substitution of non-cyclic L-amino acids for Gly 12 results in shifting this bend to residues 12 and 13. We show that many computed structures for the Gly 12-containing phosphate binding loop, segment 9-15, are superimposable on the corresponding segment of the recently determined X-ray crystallographic structure for residues 1-171 of the p21 protein. All such structures contain bends at residues 11 and 12 and most of these contain Gly 12 in the C* or D* conformational state. Other computed conformations for the 9-15 segment were superimposable on the structure of the corresponding 18-23 segment of EFtu, the bacterial chain elongation factor having structural similarities to the p21 protein in the phosphate-binding regions. This segment contains a Val residue where a Gly occurs in the p21 protein. As previously predicted, all of these superimposable conformations contain a bend at positions 12 and 13, not 11 and 12. If these structures that are superimposable on EFtu are introduced into the p21 protein structure, bad contacts occur between the sidechain of the residue (here Val) at position 12 and another phosphate binding loop region around position 61. These bad contacts between the two segments can be removed by changing the conformation of the 61 region in the p21 protein to the corresponding position of the homologous region in EFtu. In this new conformation, a large site becomes available for the binding of phosphate residues. In addition, such phenomena as autophosphorylation of the p21 protein by GTP can be explained with this new model structure for the activated protein which cannot be explained by the structure for the non-activated protein.  相似文献   

11.
The three-dimensional solution structure of a novel peptide, Pi7, purified from the venom of the scorpion Pandinus imperator, and for which no specific receptor has been found yet, was determined by two-dimensional homonuclear proton NMR methods from a nanomole amount of compound using a nano-nmr probe. Pandinus imperator peptide 7 does not block voltage-dependent K(+)-channels and does not displace labeled noxiustoxin from rat brain synaptosomal membranes. The toxin has 38 amino acid residues and, similarly to Pi1, is stabilized by four disulfide bridges (Cys6-Cys27, Cys12-Cys32, Cys16-Cys34, and Cys22-Cys37). In addition, the lysine at position 26 crucial for potassium-channel blocking is replaced in Pi7 by an arginine. Tyrosine 34, equivalent to Tyr36 of ChTX is present, but the N-terminal positions 1 and 2 are occupied by two acidic residues Asp and Glu, respectively. The dihedral angles and distance restraints obtained from measured NMR parameters were used in structural calculations in order to determine the conformation of the peptide. The disulfide-bridge topology was established using distance restraints allowing ambiguous partners between S atoms combined with NMR-derived structural information. The structure is organized around a short alpha-helix spanning residues Thr9 to Thr20/Gly21 and a beta-sheet. These two elements of secondary structure are stabilized by two disulfide bridges, Cys12-Cys32 and Cys16-Cys34. The antiparallel beta-sheet is composed of two strands extending from Asn22 to Cys34 with a tight turn at Ile28-Asn29 in contact with the N-terminal fragment Ile4 to Cys6.  相似文献   

12.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In the thioredoxin (Trx)-coupled arsenate reductase family, arsenate reductase from Staphylococcus aureus plasmid pI258 (Sa_ArsC) and from Bacillus subtilis (Bs_ArsC) are structurally related detoxification enzymes. Catalysis of the reduction of arsenate to arsenite involves a P-loop (Cys10Thr11Gly12Asn13Ser14Cys15Arg16) structural motif and a disulphide cascade between three conserved cysteine residues (Cys10, Cys82 and Cys89). For its activity, Sa_ArsC benefits from the binding of tetrahedral oxyanions in the P-loop active site and from the binding of potassium in a specific cation-binding site. In contrast, the steady-state kinetic parameters of Bs_ArsC are not affected by sulphate or potassium. The commonly occurring mutation of a histidine (H62), located about 6 A from the potassium-binding site in Sa_ArsC, to a glutamine uncouples the kinetic dependency on potassium. In addition, the binding affinity for potassium is affected by the presence of a lysine (K33) or an aspartic acid (D33) in combination with two negative charges (D30 and E31) on the surface of Trx-coupled arsenate reductases. In the P-loop of the Trx-coupled arsenate reductase family, the peptide bond between Gly12 and Asn13 can adopt two distinct conformations. The unique geometry of the P-loop with Asn13 in beta conformation, which is not observed in structurally related LMW PTPases, is stabilized by tetrahedral oxyanions and decreases the pK(a) value of Cys10 and Cys82. Tetrahedral oxyanions stabilize the P-loop in its catalytically most active form, which might explain the observed increase in k(cat) value for Sa_ArsC. Therefore, a subtle interplay of potassium and sulphate dictates the kinetics of Trx-coupled arsenate reductases.  相似文献   

14.
Cys-scanning mutagenesis of putative transmembrane helix VIII in the lactose permease of Escherichia coli (Frillingos S. Ujwal ML, Sun J, Kaback HR, 1997, Protein Sci 6:431-437) indicates that, although helix VIII contains only one irreplaceable residue (Glu 269), one face is important for active lactose transport. In this study, the rate of inactivation of each N-ethylmaleimide (NEM)-sensitive mutant is examined in the absence or presence of beta, D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG). Remarkably, the analogue affords protection against inactivation with mutants Val 264-->Cys, Gly 268-->Cys, and Asn 272-->Cys, and alkylation of these single-Cys mutants in right-side-out membrane vesicles with [14C]NEM is attenuated by TDG. In contrast, alkylation of Thr 265-->Cys, which borders the three residues that are protected by TDG, is enhanced markedly by the analogue. Furthermore, NEM-labeling in the presence of the impermeant thiol reagent methanethiosulfonate ethylsulfonate demonstrates that ligand enhances the accessibility of position 265 to solvent. Finally, no significant alteration in NEM reactivity is observed for mutant Gly 262-->Cys, Glu 269-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, or Ala 279-->Cys. The findings indicate that a portion of one face of helix VIII (Val 264, Gly 268, and Asn 272), which is in close proximity to Cys 148 (helix V), interacts with substrate, whereas another position bordering these residues (Thr 265) is altered by a ligand-induced conformational change.  相似文献   

15.
The Fo complex of the ATP synthase (F1Fo) of Escherichia coli contains only two cysteinyl residues, Cys21, of the two copies of subunit b. Modification of Cys21 with the hydrophobic maleimide N-(7-dimethylamino-4-methyl-coumarinyl)maleimide resulted in impairment of Fo functions [Schneider, E. & Altendorf, K. (1985) Eur. J. Biochim. 153, 105-109]. We replaced this residue (via cassette mutagenesis) by Ser, Gly, Ala, Thr, Asp and Pro. None of the replacements resulted in detectable alterations of the function of the ATP synthase, making a functional role for these sulfhydryl residues unlikely. Due to its high tolerance towards amino acid substitutions, the region around Cys21 seems not to be a protein-protein contact area.  相似文献   

16.
An analysis of the occurrence of nonglycyl residues in conformations disallowed in the Ramachandran plot is presented. Ser, Asn, Thr, and Cys have the highest propensities to exhibit such conformations, and the branched aliphatic residues the lowest. Residues cluster in five regions and there are some trends in the types of residues and their side-chain conformations (chi(1)) occupying these. Majority of the residues are found at the edge of helices and strands and in short loops, and are involved in different types of weak, stabilizing interactions. A structural motif has been identified where a residue in disallowed conformation occurs as the first residue of a short 3(10)-helix. On the basis of the types of neighboring residues, the location in the three-dimensional structure and accessibility, there are similarities with the occurrence of cis peptide bonds in protein structures.  相似文献   

17.
The natural resistance-associated macrophage protein (Nramp) family is functionally conserved in bacteria and eukarya; Nramp homologues function as proton-dependent membrane transporters of divalent metals. Sequence analyses indicate that five phylogenetic groups comprise the Nramp family, three bacterial and two eukaryotic, which are distinct from a more distantly related group of microbial sequences (Nramp outgroup). The Nramp family and outgroup share many conserved residues, suggesting they derived from a common ancestor and raising the possibility that the residues invariant in the Nramp family that correspond to residues which are different but also conserved in the outgroup represent candidate sites of functional divergence of the Nramp family. Four Nramp family-specific residues were identified within transmembrane domains 1, 6, and 11, and replaced by the corresponding invariant outgroup residues in the Escherichia coli Nramp ortholog (the proton-dependent manganese transporter, MntH of group A, EcoliA). The resulting mutants (Asp(34)Gly, Asn(37)Thr, His(211)Tyr, and Asn(401)Gly) were tested for both divalent metal uptake and proton transport; quasi-simultaneous analyses of uptake of metals and protons revealed for the first time protons and metals cotransport by a bacterial Nramp homologue. Additional mutations were studied for comparison (Asp(34)Asn, Asn(37)Asp and Asn(37)Val, Asn(401)Thr, His(211)Ala, His(216)Ala, and His(216)Arg). EcoliA activity was impaired after each of the Nramp/outgroup substitutions, as well as after more conservative replacements, showing that the tested sites are all important for metal uptake and metal-dependent H(+) transport. It is proposed that co-occurrence of these four Nramp-specific transmembrane residues may have contributed to the emergence of this family of metal and proton cotransporters.  相似文献   

18.
In a structure-antibacterial activity relationship study of a peptide fragment of bovine lactoferricin consisting of FKCRRWQWRMKKLGA (LFB 17-31), it was revealed that the two Trp residues were important for antibacterial activity. It has further been demonstrated that the size, shape and the aromatic character of the side chains were even more important than the Trp itself. In this study the antitumour effect of a series of LFB 17-31 derivatives are reported, in which the two Trp residues in position 6 and 8 were replaced with the larger non-coded aromatic amino acids Tbt, Tpc, Bip and Dip. The counterproductive Cys in position 3 was also substituted with these larger aromatic residues. In addition, the effect of introducing lipophilic groups of different size and shape in the N-terminal of the LFB 17-31 sequence was addressed. The resulting peptide derivatives were tested for activity against three human tumour cell lines and against normal human umbilical vein endothelial cells and fibroblasts. High antitumour activity by several of the peptides demonstrated that Trp successfully could be substituted by the bulky aromatic residues, and peptides containing the large and rigid Tbt residue in position 6 and/or 8 in LFB 17-31 were the most active candidates. The antitumour effect was even more increased by the Tbt-modified peptides when the three counterproductive amino acids Cys3, Gln7 and Gly14 were replaced by Ala. Enhanced antitumour activity was also obtained by modifying the N-terminal of LFB 17-31 with either long-chained fatty acids or bulky moieties. Thus, our results revealed that the size and shape of the lipophilic groups and their position in the peptide sequence were important for antitumour activity.  相似文献   

19.
Peña C  Blank VC  Marino VJ  Roguin LP 《Peptides》2005,26(7):1144-1149
We have previously reported the antiproliferative activity of synthetic sequences 29-35 and 122-139 of the interferon-alpha2b (IFN-alpha2b), both probably representing a common receptor recognition domain. In the search of new peptidic agonists, we designed and synthesized the linear peptide (Gly)2-122-137-Gly138-Gly29-30-35-(Gly)2, in which Gly residues replaced the 138 and 29 Cys bound through a disulfide bridge in the native cytokine. Additionally, a cyclic analog was obtained by reaction of the N- and C-terminal ends of the linear fragment. Thus, the distance that separates residues 122 and 35 in the crystalline structure of the IFN-alpha2b was maintained through a (Gly)4 bridge. When the influence of chimeric peptides on the proliferation of WISH cells was studied, it was shown that both derivatives significantly diminished cell growth. A more evident inhibitory effect on (125)I-IFN-alpha2b binding to WISH cell-membrane receptors was observed for both peptides. Results indicated that chimeric IFN-alpha2b peptides behaved as partial agonists of the IFN-alpha2b molecule and may be of interest for drug design purposes.  相似文献   

20.
Theoretical conformational analysis of oligopeptides CH3CO-Asn-X-Thr-NHCH3 (X = Gly, Ala, Pro), modelling N-glycosylation site, and their glycosylated derivatives CH3CO-(GlcNAc beta 1-4GlcNAc beta 1) Asn-X-Thr-NHCH3 has been carried out. Active conformations of the site are found, corresponding to structural prerequisities of N-glycosylation: Asn residue's position in beta-turn and hydrogen bond formation between side chains of Asn and Thr/Ser residues. In this case the L conformation of the central residue X is most probable. Since Pro residue does not possess this conformation, sequences with X = Pro are not glycosylated. It is shown that glycosylation of the above-mentioned sites is accompanied by reorientation of the Asn residue's side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号