首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential neuroanatomical specificity of astrocyte influence on neurite outgrowth was studied using an in vitro coculture system in which neurons from embryonic rat spinal cord or hippocampus were grown for 4 days in the presence of, but not in direct contact with, astrocytes derived either from the same region (homotopic coculture) or from different regions (heterotopic coculture) of the rat central nervous system. The results showed that axonal outgrowth was greatly enhanced in heterotopic cocultures in which spinal cord or hippocampal neurons were grown with astrocytes derived from their appropriate CNS target regions. This effect was remarkably specific, because the astroglia harvested from spinal or hippocampal target regions were not effective in promoting axon growth of nonafferent neuronal populations. Dendritic outgrowth was similar under all coculture conditions. These data suggest that diffusible signals, produced by astrocytes, can regulate neurite extension in vitro in a neuroanatomically specific manner and that axons are more sensitive than dendrites to the regional astrocyte environment.  相似文献   

2.
Precise localization of axonal ion channels is crucial for proper electrical and chemical functions of axons. In myelinated axons, Kv1 (Shaker) voltage-gated potassium (Kv) channels are clustered in the juxtaparanodal regions flanking the node of Ranvier. The clustering can be disrupted by deletion of various proteins in mice, including contactin-associated protein-like 2 (Caspr2) and transient axonal glycoprotein-1 (TAG-1), a glycosylphosphatidylinositol-anchored cell adhesion molecule. However, the mechanism and function of Kv1 juxtaparanodal clustering remain unclear. Here, using a new myelin coculture of hippocampal neurons and oligodendrocytes, we report that tyrosine phosphorylation plays a critical role in TAG-1-mediated clustering of axonal Kv1.2 channels. In the coculture, myelin specifically ensheathed axons but not dendrites of hippocampal neurons and clustered endogenous axonal Kv1.2 into internodes. The trans-homophilic interaction of TAG-1 was sufficient to position Kv1.2 clusters on axonal membranes in a neuron/HEK293 coculture. Mutating a tyrosine residue (Tyr458) in the Kv1.2 C terminus or blocking tyrosine phosphorylation disrupted myelin- and TAG-1-mediated clustering of axonal Kv1.2. Furthermore, Kv1.2 voltage dependence and activation threshold were reduced by TAG-1 coexpression. This effect was eliminated by the Tyr458 mutation or by cholesterol depletion. Taken together, our studies suggest that myelin regulates both trafficking and activity of Kv1 channels along hippocampal axons through TAG-1.  相似文献   

3.
Neurogenesis is known to persist in the adult mammalian central nervous system (CNS). The identity of the cells that generate new neurons in the postnatal CNS has become a crucial but elusive issue. Using a transgenic mouse, we show that NG2 proteoglycan-positive progenitor cells that express the 2',3'-cyclic nucleotide 3'-phosphodiesterase gene display a multipotent phenotype in vitro and generate electrically excitable neurons, as well as astrocytes and oligodendrocytes. The fast kinetics and the high rate of multipotent fate of these NG2+ progenitors in vitro reflect an intrinsic property, rather than reprogramming. We demonstrate in the hippocampus in vivo that a sizeable fraction of postnatal NG2+ progenitor cells are proliferative precursors whose progeny appears to differentiate into GABAergic neurons capable of propagating action potentials and displaying functional synaptic inputs. These data show that at least a subpopulation of postnatal NG2-expressing cells are CNS multipotent precursors that may underlie adult hippocampal neurogenesis.  相似文献   

4.
Focal brain lesions such as transient focal cerebral ischemia can lead to neuronal damage in remote areas, including the ipsilateral substantia nigra and hippocampus, as well as in the ischemic core. In this study, we investigated acute changes in the ipsilateral hippocampus from 1 up to 7 days after 90 min of transient focal cerebral ischemia in rats, using anti-NeuN (neuronal nuclei), anti-Cu/Zn-superoxide dismutase (Cu/Zn-SOD), anti-Mn-SOD, anti-neuronal nitric oxide synthase (nNOS), anti-inducible NOS (iNOS), anti-glial fibrillary acidic protein (GFAP), anti-ionized calcium-binding adaptor molecule 1(Iba 1) and anti-2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) antibodies. In our western blot and histochemical analyses, present results show that transient focal cerebral ischemia in rats can cause a severe and acute damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector. The present findings also demonstrate that the expression of iNOS produced by Iba 1-immunopositive microglia precedes the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia. In contrast, our results suggest that increased reactive oxygen species (ROS) production during reperfusion cannot lead to damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia, because of an insufficient expression of Cu/Zn-SOD and Mn-SOD. Our double-labeled immunohistochemical study demonstrates that the overexpression of iNOS produced by Iba 1-immunopositive microglia may play a pivotal role in the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector at an acute stage after transient focal cerebral ischemia.  相似文献   

5.
It is suggested that the information about a new stimulus from the neocortex is transferred to the hippocampus and forms there a transient trace in the form of a distributed pattern of modified synapses. During sleep, the neuronal populations which store this trace are reactivated and return to the neocortex the information necessary for consolidation of the permanent memory trace. A possible mechanism of the reactivation of the "learned" hippocampal neurons during memory consolidation is the reverberation of excitation in the neuronal circuits connecting the hippocampus and the entorhinal cortex. In rats, we recorded responses in hippocampal field CA1 to stimulation of the Schaffer collaterals with potentiated synapses during wakefulness and sleep. We showed that in the periods of deep sleep, after the discharge of CA1 neurons, the wave of excitation passes through the entorhinal cortex and via the perforant path fibers enters the hippocampus and the dentate gyrus, causing in the latter the discharge of neurons. The repeated discharge of the CA1 neurons develops as the result of interaction of the early wave which is returned directly via the perforant path fibers and the late wave which is returned via the Schaffer collaterals, but not through the dentate gyrus and hippocampal field CA3 (trisynaptic pathway), but, probably, through the field CA2.  相似文献   

6.
Following development, the avian brain continues to produce neurons throughout adulthood, which functionally integrate throughout the telencephalon, including the hippocampus. In food‐storing birds like the black‐capped chickadee (Poecile atricapillus), new neurons incorporated into the hippocampus are hypothesized to play a role in spatial learning. Previous results on the relation between hippocampal neurogenesis and spatial learning, however, are correlational. In this study, we experimentally suppressed hippocampal neuronal recruitment and tested for subsequent effects on spatial learning in adult chickadees. After chickadees exhibited significant learning, we treated birds with daily injections of either saline or methylazoxymethanol (MAM), a toxin that suppresses cell proliferation in the brain and monitored subsequent spatial learning. MAM treatment significantly reduced cell proliferation around the lateral ventricles and neuronal recruitment in the hippocampus, measured using the cell birth marker bromodeoxyuridine. MAM‐treated birds performed significantly worse than controls on the spatial learning task 12 days following the initiation of MAM treatment, a time when new neurons would begin functionally integrating into the hippocampus. This difference in learning, however, was limited to a single trial. MAM treatment did not affect any measure of body condition, suggesting learning impairments were not a product of non‐specific adverse effects of MAM. This is the first evidence of a potential causal link between hippocampal neurogenesis and spatial learning in birds. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1002–1010, 2014  相似文献   

7.
Two facts about the hippocampus have been common currency among neuroscientists for several decades. First, lesions of the hippocampus in humans prevent the acquisition of new episodic memories; second, activity-dependent synaptic plasticity is a prominent feature of hippocampal synapses. Given this background, the hypothesis that hippocampus-dependent memory is mediated, at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory as it has been difficult to prove in practice. Here we argue that the recent development of transgenic molecular devices will encourage a shift from mechanistic investigations of synaptic plasticity in single neurons towards an analysis of how networks of neurons encode and represent memory, and we suggest ways in which this might be achieved. In the process, the hypothesis that synaptic plasticity is necessary and sufficient for information storage in the brain may finally be validated.  相似文献   

8.
The capability of the mammalian brain to generate new neurons through the lifespan has gained much attention for the promise of new therapeutic possibilities especially for the aging brain. One of the brain regions that maintains a neurogenesis‐permissive environment is the dentate gyrus of the hippocampus. Here, new neurons are generated from a pool of multipotent neural progenitor cells to become fully functional neurons that are integrated into the brain circuitry. A growing body of evidence points to the fact that neurogenesis in the adult hippocampus is necessary for certain memory processes, and in mood regulation, while alterations in hippocampal neurogenesis have been associated with a myriad of neurological and psychiatric disorders. More recently, evidence has come to light that new neurons may differ in their vulnerability to environmental and disease‐related influences depending on the time during the life course at which they are exposed. Thus, it has been the topic of intense research in recent years. In this review, we will discuss the complex process and associated functional relevance of hippocampal neurogenesis during the embryonic/postnatal period and in adulthood. We consider the implications of hippocampal neurogenesis during the developmentally critical periods of adolescence and older age. We will further consider the literature surrounding hippocampal neurogenesis and its functional role during these critical periods with a view to providing insight into the potential of harnessing neurogenesis for health and therapeutic benefit.  相似文献   

9.
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.  相似文献   

10.
Abstract: Previous reports indicate that oligodendrocytes express signaling systems activated by classical neurotransmitters. Several signaling systems linked to mobilization of intracellular calcium have been demonstrated, and some of these are developmentally lost in vitro and in vivo. The experiments described here use oligodendrocyte-neuron cocultures to examine the effects of neuronal contact on the expression of these signaling pathways. Neonatal rat cerebral oligodendrocytes in contact with dorsal root ganglia (DRG) neurites responded to bath application of histamine, ATP, carbachol, glutamate, or bradykinin with increases in intracellular Ca2+ concentration. Similar results were obtained in coculture with superior cervical ganglia neurons. Preventing neuronal contact by transection of DRG neurites significantly reduced the percentage of oligodendrocytes responsive to each ligand, with the exception of bradykinin responsiveness, which was unaffected. Oligodendroglia isolated from adult rat spinal cord were also examined for responsiveness to these neuroligands. Few isolated adult oligodendroglia were responsive to these ligands, and coculture with DRG neurons failed to restore responsiveness. Neuroligand responsiveness was not induced in oligodendrocytes maintained 8 days in purified culture before establishment of cocultures. A significant reduction in the number of neuroligand-responsive oligodendroglia was noted for histamine, carbachol, glutamate, and ATP after including tetrodotoxin for the final 6 days of coculture. These results suggest that both neuronal contact and neuronal activity contribute to the maintenance of functional neurotransmitter-activated signaling pathways coupled to mobilization of intracellular calcium in oligodendrocytes.  相似文献   

11.
Hippocampal interneurons are local circuit neurons which are responsible for inhibitory activity in the hippocampus. Parvalbumin (PV) is one of useful markers for GABAergic interneurons, not for principle cells, in the hippocampus. In the present study, we investigated age-related changes in PV immunoreactive neurons and protein levels in the gerbil hippocampus during normal aging. PV immunoreactive neurons were detected in all hippocampal subregions of all groups. PV immunoreactive neurons, which innervated principal neurons, were non-pyramidal neurons in the hippocampal CA1-3 regions, and were polymorphic neurons in the dentate gyrus. In the hippocampal CA1 region, the number of PV immunoreactive neurons was significantly reduced in the postnatal month 3 (PM 3) group, which was sustained by PM 18, and, at PM 24, the number of PV immunoreactive neurons was significantly decreased. In the CA2/3 region and dentate gyrus, the number of PV immunoreactive neurons was significantly decreased at PM 6: Thereafter, the number of PV immunoreactive neurons was sustained until PM 24. In addition, changes in PV protein levels in the gerbil hippocampus were similar to immunohistochemical changes during normal aging: PV protein levels were significantly decreased with age by PM 6: Thereafter, PV protein levels were sustained by PM 24. These results suggest that PV immunoreactive interneurons were decreased in the hippocampus with age in gerbils.  相似文献   

12.
Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation. While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and maturation of adult-generated cells in the dentate gyrus. Here, we review the current state of our understanding on the interplay between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension of the regulation and function of adult hippocampal neurogenesis.  相似文献   

13.
Neural stem cells in the adult human brain   总被引:39,自引:0,他引:39  
New neurons are continuously generated in certain regions of the adult brain. Studies in rodents have shown that new neurons are generated from self-renewing multipotent neural stem cells. Here we demonstrate that both the lateral ventricle wall and the hippocampus of the adult human brain harbor self-renewing cells capable of generating neurons, astrocytes, and oligodendrocytes in vitro, i.e., bona fide neural stem cells.  相似文献   

14.
Summary We report here on cholinergic neurons in the rat hippocampal formation that were identified by immunocytochemistry employing a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme. In general, ChAT-immunoreactive cells were rare, but were observed in all layers of the hippocampus proper and fascia dentata with a preponderance in zones adjacent to the hippocampal fissure and in the part of CA1 bordering the subiculum. All immunoreactive cells found were non-pyramidal neurons. They were relatively small with round or ovoid perikarya, which gave rise to thin spine-free dendrites. These hippocampal neurons were very similar to ChAT-immunoreactive cells in the neocortex of the same animals but were quite different from cholinergic neurons in the basal forebrain, medial septal nucleus, and neostriatum, which were larger and more intensely immunostained.Electron-microscopic analysis of ChAT-immunoreactive cells in the hippocampus and fascia dentata revealed synaptic contacts, mainly of the asymmetric type, on cell bodies and smooth proximal dendrites. The nuclei of the immunoreactive cells exhibited deep indentations, which are characteristic for non-pyramidal neurons.Our results provide evidence for an intrinsic source of the hippocampal cholinergic innervation in addition to the well-established septo-hippocampal cholinergic projection.Dr. C. Léránth is on leave of absence from the First Department of Anatomy, Semmelweis University Medical School, H-1450 Budapest, Hungary  相似文献   

15.
Yanike M  Wirth S  Suzuki WA 《Neuron》2004,42(3):477-487
In the neocortex, extensive training results in enhanced neuronal selectivity for learned stimuli relative to novel stimuli. This enhanced selectivity has been taken as evidence for learning-related plasticity. Much less is known, in contrast, about the representation of well-learned information in the hippocampus. In this study, we examined the responses of individual hippocampal neurons to well-learned and novel stimuli presented in the context of an associative learning task. There was no difference in the response magnitude or visual response latency of hippocampal neurons to the well-learned and novel stimuli. In contrast, hippocampal neurons responded significantly more selectively to the well-learned stimuli relative to the novel stimuli. These findings show that hippocampal cells, like neocortical cells, show greater selectivity to well-learned stimuli compared to novel stimuli.  相似文献   

16.
The basic structure of the cortico-hippocampal system is highly conserved across mammalian species. Comparatively few hippocampal neurons can represent and address a multitude of cortical patterns, establish associations between cortical patterns and consolidate these associations in the cortex. In this study, we investigate how elementary anatomical properties in the cortex-hippocampus loop along with synaptic plasticity contribute to these functions. Specifically, we focus on the high degree of connectivity between cortex and hippocampus leading to converging and diverging forward and backward projections and heterogenous synaptic transmission delays that result from the detached location of the hippocampus and its multiple loops. We found that in a model incorporating these concepts, each cortical pattern can evoke a unique spatio-temporal spiking pattern in hippocampal neurons. This hippocampal response facilitates a reliable disambiguation of learned associations and a bridging of a time interval larger than the time window of spike-timing dependent plasticity in the cortex. Moreover, we found that repeated retrieval of a stored association leads to a compression of the interval between cue presentation and retrieval of the associated pattern from the cortex. Neither a high degree of connectivity nor heterogenous synaptic delays alone is sufficient for this behavior. We conclude that basic anatomical properties between cortex and hippocampus implement mechanisms for representing and consolidating temporal information. Since our model reveals the observed functions for a range of parameters, we suggest that these functions are robust to evolutionary changes consistent with the preserved function of the hippocampal loop across different species.  相似文献   

17.
Myosins belong to a large superfamily of actin-dependent molecular motors. Nonmuscle myosin II (NM II) is involved in the morphology and function of neurons, but little is known about how NM II activity is regulated. Brain-derived neurotrophic factor (BDNF) is a prevalent neurotrophic factor in the brain that encourages growth and differentiation of neurons and synapses. In this study, we report that BDNF upregulates the phosphorylation of myosin regulatory light chain (MLC2), to increases the activity of NM II. The role of BDNF on modulating the phosphorylation of MLC2 was validated by using Western blotting in primary cultured hippocampal neurons. This result was confirmed by injecting BDNF into the dorsal hippocampus of mice and detecting the phosphorylation level of MLC2 by Western blotting. We further perform coimmunoprecipitation assay to confirm that this process depends on the activation of the LYN kinase through binding with tyrosine kinase receptor B, the receptor of BDNF, in a kinase activity-dependent manner. LYN kinase subsequently phosphorylates MLCK, further promoting the phosphorylation of MLC2. Taken together, our results suggest a new molecular mechanism by which BDNF regulates MLC2 activity, which provides a new perspective for further understanding the functional regulation of NM II in the nervous system.  相似文献   

18.
19.
Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration) on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose) for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal neurons, which may lead to changes in synaptic proteins, thus contributing to changes in hippocampal neurotransmission and to cognitive and memory impairments.  相似文献   

20.
During central nervous system development, neurons differentiate distinct axonal and dendritic processes whose outgrowth is influenced by environmental cues. Given the known intrinsic differences between axons and dendrites and that little is known about the response of dendrites to inhibitory cues, we tested the hypothesis that outgrowth of differentiating axons and dendrites of hippocampal neurons is differentially influenced by inhibitory environmental cues. A sensitive growth cone behavior assay was used to assess responses of differentiating axonal and dendritic growth cones to oligodendrocytes and oligodendrocyte- derived, myelin-associated glycoprotein (MAG). We report that >90% of axonal growth cones collapsed after contact with oligodendrocytes. None of the encounters between differentiating, MAP-2 positive dendritic growth cones and oligodendrocytes resulted in growth cone collapse. The insensitivity of differentiating dendritic growth cones appears to be acquired since they develop from minor processes whose growth cones are inhibited (nearly 70% collapse) by contact with oligodendrocytes. Recombinant MAG(rMAG)-coated beads caused collapse of 72% of axonal growth cones but only 29% of differentiating dendritic growth cones. Unlike their response to contact with oligodendrocytes, few growth cones of minor processes were inhibited by rMAG-coated beads (20% collapsed). These results reveal the capability of differentiating growth cones of the same neuron to partition the complex molecular terrain they navigate by generating unique responses to particular inhibitory environmental cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号