首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Syringomycin and syringopeptin are lipodepsipeptide phytotoxins produced by Pseudomonas syringae pv. syringae . Four syr genes were identified previously and hypothesized to be involved in the regulation ( syrA ), biosynthesis ( syrB and syrC ), or export ( syrD ) of syringomycin. This study determines the influence of syr mutations on the composition of phytotoxic metabolites produced by P. syringae pv. syringae strain B301D-R. Levels of syringomycin and syringopeptin produced in liquid cultures were estimated by reverse phase HPLC analyses and differential antimicrobial assays. Significant quantities of syringopeptin were produced by both syrB and syrC mutants despite their inability to produce syringomycin. Only trace quantities of both lipodepsipeptides were produced by syrA and syrD mutants of P. syringae pv. syringae . These results indicate that syringomycin and syringopeptin are synthesized by separate pathways, but may share common mechanisms for secretion and regulation.  相似文献   

2.
3.
Syringomycin is a necrosis-inducing phytotoxin produced by Pseudomonas syringae pv. syringae. To determine whether syringomycin production is a determinant in virulence or pathogenicity, we isolated nontoxigenic (Tox) Tn5-containing mutants and then quantitatively evaluated them for the ability to multiply and cause disease in immature sweet-cherry fruits. Transposon Tn5 was delivered to Tox+ strain B301D-R by using the suicide vector, pGS9, and the resultant kanamycin-resistant (Kmr) colonies were screened for changes in syringomycin production by testing for antibiosis against Geotrichum candidum. Southern blot analysis of KpnI-and EcoRI-digested DNA showed that 15 (0.3%) Tox mutants were isolated which had Tn5 inserted into 1 of 14 distinct loci. Phenotypic characterization of the Tox mutants identified three major groups, which were differentiated by pathogenicity and ability to cause a tobacco hypersensitive reaction (HR). The eight strains in group A were pathogenic (Path+) in cherry fruit assays, but the disease index was 17 to 66% lower (significant at P = 0.01) than for the parental Tox+ strain, B301D-R. The population dynamics of group A strains W4S770 and W4S116 in cherry fruits were, however, indistinguishable from that of strain B301D-R. The remaining seven Tox strains were nonpathogenic; group B strain W4S2545 (Path HR+) and group C strain W4S468 (Path HR) developed significantly lower populations (105 to 107 CFU per cherry fruit) 3 days after inoculation than strain B301D-R did (nearly 109 CFU per fruit). The data indicate that syringomycin is not essential for pathogenicity, but contributes significantly to virulence.  相似文献   

4.
The syrA and syrB genes involved in syringomycin production in Pseudomonas syringae pv. syringae B301D were identified from an EcoRI-pLAFR3 cosmid library and then physically and functionally analyzed in relation to plant pathogenicity. Homologous recombination of the genes required for syringomycin production from cosmids pGX183 (syrA) and pGX56 (syrB), respectively, introduced into nontoxigenic (Tox-) Tn5 mutants W4S2545 and W4S770 resulted in the concomitant restoration of toxin production and full virulence. The disease indices of the Tox+ strains obtained by recombination of the cloned, homologous DNA into the corresponding Tn5 mutant were essentially equivalent to that of strain B301D-R and significantly higher than those of W4S2545 and W4S770. A 12-kilobase (kb) EcoRI fragment from pGX183 was subcloned (i.e., pGX15) and found to contain the sequences necessary for syringomycin production. A map of pGX15 prepared by a combination of restriction endonuclease digestions and Tn5 mutagenesis showed that the syrA sequence was 2.3 to 2.8 kb. Marker exchange of syrA::Tn5 from pGX15 into B301D-R yielded nonpathogenic phenotypes, indicating that syrA is a regulatory gene since it is necessary for both syringomycin production and pathogenicity. The 4.9-kb EcoRI fragment from pGX56 was subcloned (i.e., pGX4) and shown to carry the syrB sequence which was 2.4 to 3.3 kb. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of protein extracts from B301D-R associated five proteins, ranging from approximately 130,000 to approximately 470,000 in molecular weight, with syringomycin production. The syrA and syrB genes were required for the formation of proteins SR4 (approximately 350,000) and SR5 (approximately 130,000), which are believed to be components of the syringomycin synthetase complex.  相似文献   

5.
Sequencing of an approximately 3.9-kb fragment downstream of the syrD gene of Pseudomonas syringae pv. syringae strain B301D revealed that this region, designated sypA, codes for a peptide synthetase, a multifunctional enzyme involved in the thiotemplate mechanism of peptide biosynthesis. The translated protein sequence encompasses a complete amino acid activation module containing the conserved domains characteristic of peptide synthetases. Analysis of the substrate specificity region of this module indicates that it incorporates 2,3-dehydroaminobutyric acid into the syringopeptin peptide structure. Bioassay and high performance liquid chromatography data confirmed that disruption of the sypA gene in strain B301D resulted in the loss of syringopeptin production. The contribution of syringopeptin and syringomycin to the virulence of P. syringae pv. syringae strain B301D was examined in immature sweet cherry with sypA and syrB1 synthetase mutants defective in the production of the two toxins, respectively. Syringopeptin (sypA) and syringomycin (syrB1) mutants were reduced in virulence 59 and 26%, respectively, compared with the parental strain in cherry, whereas the syringopeptin-syringomycin double mutant was reduced 76% in virulence. These data demonstrate that syringopeptin and syringomycin are major virulence determinants of P. syringae pv. syringae.  相似文献   

6.
Genetic and phenotypic mapping of an approximately 145-kb DraI fragment of Pseudomonas syringae pv. syringae strain B301D determined that the syringomycin (syr) and syringopeptin (syp) gene clusters are localized to this fragment. The syr and syp gene clusters encompass approximately 55 kb and approximately 80 kb, respectively. Both phytotoxins are synthesized by a thiotemplate mechanism of biosynthesis, requiring large multienzymatic proteins called peptide synthetases. Genes encoding peptide synthetases were identified within the syr and syp gene clusters, accounting for 90% of the DraI fragment. In addition, genes encoding regulatory and secretion proteins were localized to the DraI fragment. In particular, the salA gene, encoding a regulatory element responsible for syringomycin production and lesion formation in P. syringae pv. syringae strain B728a, was localized to the syr gene cluster. A putative ATP-binding cassette (ABC) transporter homolog was determined to be physically located in the syp gene cluster, but phenotypically affects production of both phytotoxins. Preliminary size estimates of the syr and syp gene clusters indicate that they represent two of the largest nonribosomal peptide synthetase gene clusters. Together, the syr and syp gene clusters encompass approximately 135 kb of DNA and may represent a genomic island in P. syringae pv. syringae that contributes to virulence in plant hosts.  相似文献   

7.
Syringomycin is a lipodepsinonapeptide phytotoxin synthesized by Pseudomonas syringae pv. syringae on multienzymatic peptide synthetases. Sequence analysis of the interval between the syrB and syrD genes of P. syringae pv. syringae strain B301D revealed a 1,059-bp open reading frame (ORF), designated syrP. The predicted product of this ORF was a 39.6-kDa protein consisting of 353 amino acid residues. Searches of protein sequence databases demonstrated that SyrP was most similar to histidine kinases such as the CheA regulatory protein of Escherichia coli. The predicted SyrP sequence was aligned with the N terminus of CheA, a region corresponding to the phosphotransfer and acceptor domains of CheA. The SyrP region that aligns with the phosphotransfer domain of CheA contained a His at position 101 which is flanked by a weak consensus sequence of the unorthodox sensory kinase subfamily of two-component regulatory systems. Strain B301D-31, obtained by site-directed insertional mutagenesis of the syrP gene, exhibited an unusual pleiotropic phenotype including a failure to produce syringomycin in liquid media in contrast to production of elevated levels of the toxin on agar media. The syrP mutant was relieved of the suppression of toxin production that accompanies inorganic phosphate concentrations of > 1 mM on agar media. Nevertheless, the syrP mutant was substantially less virulent than the wild-type strain in pathogenicity assays in cherry fruits. These results suggest that the syrP gene encodes a regulatory protein that participates in a phosphorylation cascade controlling syringomycin production and virulence in P. syringae pv. syringae.  相似文献   

8.
The activity of some phytotoxic metabolites of Pseudomonas syringae pv. syringae Van Hall strains B359 and B301 on in vivo and in vitro systems of H+-transport across the plasma membrane of maize (Zea mays L., hybrid Paolo) was investigated. In particular syringomycin, the first lipodepsinonapeptide isolated from Pss and already studied in plants and yeasts for its effects on several physiological systems, was compared with the recently described lipodepsipeptides with 22 or 25 amino acid residues, so called syringopeptins. The in vivo activity of the phytotoxins was tested on fusicoccin-stimulated H?-extrusion from cuttings of maize roots, which was inhibited by both types of toxins, with syringomycin more efficient than the syringopeptins. In vitro the H+-ATPase activity of predominantly right-side-out plasma membrane vesicles purified by two-phase partitioning was stimulated by 10 μM syringomycin and inhibited by higher levels, in agreement with the results of others with preparations of dicotyledons. Also the inhibition of the phosphohydrolytic activity of inside-out vesicles of mung bean plasma membrane was confirmed for maize. In both types of vesicles the syringopeptirts were better inhibitors than syringomycin. The pH gradient formed on addition of ATP to predominantly (25% latency) inside-out vesicles was immediately and completely collapsed by syringomycin and syringopeptins; H+-pumping was prevented if the toxins were added before ATP. The inhibition was concentration dependent, but at very low concentrations the effect was inverted. The results of the present investigation, carried out with maize preparations, confirm and extend the evidence so far obtained with dicotyledons in favour of the plasma membrane as an important site of interaction of syringomycin with the plant cell. They also indicate that, except for some details, the effects of syringopeptins at the level of the plasma membrane are the same as those of syringomycin.  相似文献   

9.
Sequence analysis of the right border of the syr gene cluster of Pseudomonas syringae pv. syringae strain B301D revealed the presence of the salA gene 8,113 bp downstream of syrE. The predicted SalA protein of strain B301D differs by one amino acid from that of strain B728a. Two homologs of salA, designated syrF and syrG, were identified between syrE and salA. All three proteins contain helix-turn-helix DNA-binding motifs at their C termini and exhibit homology to regulatory proteins of the LuxR family. A salA mutant failed to produce syringomycin, whereas syrF and syrG mutants produced 12 and 50%, respectively, of syringomycin relative to the wild-type strain. The salA, syrF, and syrG mutants were significantly reduced in virulence, forming small, nonspreading lesions in immature cherry fruits. Translational fusions to the uidA gene were constructed to evaluate expression of syrB1 in regulatory mutant backgrounds and to determine the relationship among the three regulatory loci. Expression of a syrB1::uidA fusion required functional salA and syrF genes and, in series, the expression of a syrF::uidA fusion required a functional salA gene. These results demonstrate that salA is located upstream of syrF in the regulatory hierarchy controlling syringomycin production and virulence in P. syringae pv. syringae.  相似文献   

10.
11.
Two types of necrosis-inducing lipodepsipeptide toxins, called syringomycin and syringopeptin, are major virulence factors of Pseudomonas syringae pv. syringae strain B301D. A previous study showed that a locus, called syrA, was required for both syringomycin production and plant pathogenicity, and the syrA locus was speculated to encode a regulator of toxin production. In this study, sequence analysis of the 8-kb genomic DNA fragment that complements the syrA phenotype revealed high conservation among a broad spectrum of fluorescent pseudomonads. The putative protein encoded by open reading frame 4 (ORF4) (1,299 bp) in the syrA locus region exhibited 85% identity to ArgA, which is involved in arginine biosynthesis in Pseudomonas aeruginosa. Growth of strain W4S2545, the syrA mutant, required supplementation of N minimal medium with arginine. Similarly, syringomycin production of syrA mutant W4S2545 was restored by the addition of arginine to culture media. Furthermore, the insertion of Tn5 in the genome of the syrA mutant W4S2545 was localized between nucleotides 146 and 147 in ORF4, and syringomycin production was complemented in trans with the wild-type DNA fragment containing intact ORF4. These results demonstrate that the syrA locus is the argA gene of P. syringae pv. syringae and that argA is directly involved in arginine biosynthesis and therefore indirectly affects syringomycin production because of arginine deficiency.  相似文献   

12.
13.
14.
The epiphyte Pseudomonas syringae pv. syringae 22d / 93 (Pss22d), isolated from soybean leaves, had been characterized as a promising and species‐specific biocontrol strain in vitro and in planta against the plant pathogen P. syringae pv. glycinea (Psg), which causes bacterial blight of soybean. Three toxins are known to be produced by Pss22d: syringomycin, syringopeptin and 3‐methylarginine (MeArg). In contrast to syringopeptin and syringomycin, MeArg inhibited the growth of Psg in vitro. To examine if the toxins produced by Pss22d are responsible for antagonistic effects in planta, the pathogen Psg was co‐inoculated with either Pss22d wild‐type, a syringopeptin/syringomycin‐negative double mutant (Pss22d.ΔsypA/syrE), or a MeArg‐negative mutant (Pss22d.1) into wounds of pin‐pricked leaves of greenhouse‐grown soybean plants, respectively. In all three cases, the wild‐type Pss22d and its toxin‐deficient mutants prevented development of disease symptoms normally caused by Psg. These results indicated that neither syringopeptin, nor syringomycin, nor MeArg was required for Pss22d’s antagonistic activity in planta. Consequently, factors other than the three toxins may contribute to the intra‐species antagonism in planta.  相似文献   

15.
The majority of pathogenic strains ofPseudomonas syringae produce the phytotoxin syringomycin. After treatment ofP. syringae with acridine organe, some surviving isolates were unable to produce the toxin or disease in maize plants. DNA analysis of strain HS191 revealed the presence of a single, 35-megadalton plasmid, designated pCG131; no detectable plasmid was seen in the cured derivative. Comparative studies with the parent and cured strains showed an association between the presence of the plasmid and the following properties: syringomycin production, resistance to bacteriocin PSC-1B, and resistance to phages Psp1 and Psy4A.  相似文献   

16.
17.
18.
Toxin-based identification procedures are useful for differentiating Pseudomonas syringae pathovars. A biological test on peptone-glucose-NaCl agar in which the yeast Rhodotorula pilimanae was used proved to be more reliable for detecting lipodepsipeptide-producing strains of P. syringae than the more usual test on potato dextrose agar in which Geotrichum candidum is used. A PCR test performed with primers designed to amplify a 1,040-bp fragment in the coding sequence of the syrD gene, which was assumed to be involved in syringomycin and syringopeptin secretion, efficiently detected the gene in pathovars that produce the lipodepsipeptides. Comparable results were obtained in both tests performed with strains of the syringomycin-producing organisms P. syringae pv. syringae, P. syringae pv. atrofaciens, and P. syringae pv. aptata, but the PCR test failed with a syringotoxin-producing Pseudomonas fuscovaginae strain. The specificity of the test was verified by obtaining negative PCR test results for related pathovars or species that do not produce the toxic lipodepsipeptides. P. syringae pv. syringae was detected repeatedly in liquid medium inoculated with diseased vegetative tissue and assayed by the PCR test. Our procedure was also adapted to detect P. syringae pv. morsprunorum with a cfl gene-based PCR test.  相似文献   

19.
The genes lemA (which we here redesignate gacS ) and gacA encode members of a widely conserved two-component regulatory system. In Pseudomonas syringae strain B728a, gacS and gacA are required for lesion formation on bean, as well as for the production of protease and the toxin syringomycin. A gene, designated salA , was discovered that restored syringomycin production to a gacS mutant when present on a multiple-copy plasmid. Disruption of chromosomal salA resulted in loss of syringomycin production and lesion formation in laboratory assays. Sequence analysis of salA suggests that it encodes a protein with a DNA-binding motif but without other significant similarity to proteins in current databases. Chromosomal reporter fusions revealed that gacS and gacA positively regulate salA , that salA upregulates its own expression and that salA positively regulates the expression of a syringomycin biosynthetic gene, syrB . Loss of syringomycin production does not account for the salA mutant's attenuated pathogenicity, as a syrB mutant was found to retain full virulence. The salA gene did not similarly suppress the protease deficient phenotype of gacS mutants, nor were salA mutants affected for protease production. A gacS/gacA -dependent homoserine lactone activity as detected by bioassay was also unaffected by the disruption of salA . Thus, salA appears to encode a novel regulator that activates the expression of at least two separate genetic subsets of the gacS/gacA regulon, one pathway leading to syringomycin production and the other resulting in plant disease.  相似文献   

20.
beta-Exotoxin I is a nonspecific insecticidal metabolite secreted by some Bacillus thuringiensis strains. Several studies of B. thuringiensis strains that have lost the capacity to produce beta-exotoxin I have suggested that there is a strong correlation between high levels of beta-exotoxin I production and the ability to synthesize crystal proteins. In this study, we showed that a mutant strain, B. thuringiensis 407-1(Cry(-))(Pig(+)), with no crystal gene, produced considerable amounts of beta-exotoxin I together with a soluble brown melanin pigment. Therefore, beta-exotoxin I production can take place after a strain has lost the plasmids bearing the cry genes, which suggests that these curable plasmids probably contain determinants involved in the regulation of beta-exotoxin I production. Using a mini-Tn10 transposon, we constructed a library of strain 407-1(Cry(-))(Pig(+)) mutants. We screened for nonpigmented mutants with impaired beta-exotoxin I production and identified a genetic locus harboring two genes (berA and berB) essential for beta-exotoxin I production. The deduced amino acid sequence of the berA gene displayed significant similarity to the ATP-binding domains of the DRI (drug resistance and immunity) family of ATP-binding cassette (ABC) proteins involved in drug resistance and immunity to bacteriocins and lantibiotics. The berB gene encodes a protein with six putative transmembrane helices, which probably constitutes the integral membrane component of the transporter. The demonstration that berAB is required for beta-exotoxin I production and/or resistance in B. thuringiensis adds an adenine nucleotide analog to the wide range of substrates of the superfamily of ABC proteins. We suggest that berAB confers beta-exotoxin I immunity in B. thuringiensis, through active efflux of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号