首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant of Methylobacterium extorquens AM1 with lesions in genes for three formate dehydrogenase (FDH) enzymes was previously described by us (L. Chistoserdova, M. Laukel, J.-C. Portais, J. A. Vorholt, and M. E. Lidstrom, J. Bacteriol. 186:22-28, 2004). This mutant had lost its ability to grow on formate but still maintained the ability to grow on methanol. In this work, we further investigated the phenotype of this mutant. Nuclear magnetic resonance experiments with [13C]formate, as well as 14C-labeling experiments, demonstrated production of labeled CO2 in the mutant, pointing to the presence of an additional enzyme or a pathway for formate oxidation. The tungsten-sensitive phenotype of the mutant suggested the involvement of a molybdenum-dependent enzyme. Whole-genome array experiments were conducted to test for genes overexpressed in the triple-FDH mutant compared to the wild type, and a gene (fdh4A) was identified whose translated product carried similarity to an uncharacterized putative molybdopterin-binding oxidoreductase-like protein sharing relatively low similarity with known formate dehydrogenase alpha subunits. Mutation of this gene in the triple-FDH mutant background resulted in a methanol-negative phenotype. When the gene was deleted in the wild-type background, the mutant revealed diminished growth on methanol with accumulation of high levels of formate in the medium, pointing to an important role of FDH4 in methanol metabolism. The identity of FDH4 as a novel FDH was also confirmed by labeling experiments that revealed strongly reduced CO2 formation in growing cultures. Mutation of a small open reading frame (fdh4B) downstream of fdh4A resulted in mutant phenotypes similar to the phenotypes of fdh4A mutants, suggesting that fdh4B is also involved in formate oxidation.  相似文献   

2.
3.
4.
Enzyme IIIMtl is part of the mannitol phosphotransferase system of Enterococcus faecalis. It is phosphorylated in a reaction sequence requiring enzyme I and heat-stable phosphocarrier protein (HPr). The phospho group is transferred from enzyme IIIMtl to enzyme IIMtl, which then catalyzes the uptake and concomitant phosphorylation of mannitol. The internalized mannitol-1-phosphate is oxidized to fructose-6-phosphate by mannitol-1-phosphate dehydrogenase. In this report we describe the cloning of the mtlF and mtlD genes, encoding enzyme IIIMtl and mannitol-1-phosphate dehydrogenase of E. faecalis, by a complementation system designed for cloning of gram-positive phosphotransferase system genes. The complete nucleotide sequences of mtlF, mtlD, and flanking regions were determined. From the gene sequences, the primary translation products are deduced to consist of 145 amino acids (enzyme IIIMtl) and 374 amino acids (mannitol-1-phosphate dehydrogenase). Amino acid sequence comparison confirmed a 41% similarity of E. faecalis enzyme IIIMtl to the hydrophilic enzyme IIIMtl-like portion of enzyme IIMtl of Escherichia coli and 45% similarity to enzyme IIIMtl of Staphylococcus carnosus. The putative N-terminal NAD+ binding domain of mannitol-1-phosphate dehydrogenase of E. faecalis shows a high degree of similarity with the N terminus of E. coli mannitol-1-phosphate dehydrogenase (T. Davis, M. Yamada, M. Elgort, and M. H. Saier, Jr., Mol. Microbiol. 2:405-412, 1988) and the N-terminal part of the translation product of S. carnosus mtlD, which was also determined in this study. There is 40% similarity between the dehydrogenases of E. faecalis and E. coli over the whole length of the enzymes. The organization of mannitol-specific genes in E. faecalis seems to be similar to the organization in S. carnosus. The open reading frame for enzyme IIIMtl E. faecalis is followed by a stem-loop structure, analogous to a typical Rho-independent terminator. We conclude that the mannitol-specific genes are organized in an operon and that the gene order is mtlA orfX mtlF mtlD.  相似文献   

5.
6.
Mutants of Escherichia coli were isolated which were affected in the formation of both formate dehydrogenase N (phenazine methosulfate reducing) (FDHN) and formate dehydrogenase H (benzylviologen reducing) (FDHH). They were analyzed, together with previously characterized pleiotropic fdh mutants (fdhA, fdhB, and fdhC), for their ability to incorporate selenium into the selenopolypeptide subunits of FDHN and FDHH. Eight of the isolated strains, along with the fdhA and fdhC mutants, maintained the ability to selenylate tRNA, but were unable to insert selenocysteine into the two selenopolypeptides. The fdhB mutant tested had lost the ability to incorporate selenium into both protein and tRNA. fdhF, which is the gene coding for the 80-kilodalton selenopolypeptide of FDHH, was expressed from the T7 promoter-polymerase system in the pleiotropic fdh mutants. A truncated polypeptide of 15 kilodaltons was formed; but no full-length (80-kilodalton) gene product was detected, indicating that translation terminates at the UGA codon directing the insertion of selenocysteine. A mutant fdhF gene in which the UGA was changed to UCA expressed the 80-kilodalton gene product exclusively. This strongly supports the notion that the pleiotropic fdh mutants analyzed possess a lesion in the gene(s) encoding the biosynthesis or the incorporation of selenocysteine. The gene complementing the defect in one of the isolated mutants was cloned from a cosmid library. Subclones were tested for complementation of other pleiotropic fdh mutants. The results revealed that the mutations in the eight isolates fell into two complementation groups, one of them containing the fdhA mutation. fdhB, fdhC, and two of the new fdh isolates do not belong to these complementation groups. A new nomenclature (sel) is proposed for pleiotropic fdh mutations affecting selenium metabolism. Four genes have been identified so far: selA and selB (at the fdhA locus), selC (previously fdhC), and selD (previously fdhB).  相似文献   

7.
8.
The enzyme chorismate synthase was purified in milligram quantities from an overproducing strain of Escherichia coli. The amino acid sequence was deduced from the nucleotide sequence of the aroC gene and confirmed by determining the N-terminal amino acid sequence of the purified enzyme. The complete polypeptide chain consists of 357 amino acid residues and has a calculated subunit Mr of 38,183. Cross-linking and gel-filtration experiments show that the enzyme is tetrameric. An improved purification of chorismate synthase from Neurospora crassa is also described. Cross-linking and gel-filtration experiments on the N. crassa enzyme show that it is also tetrameric with a subunit Mr of 50,000. It is proposed that the subunits of the N. crassa enzyme are larger because they contain a diaphorase domain that is absent from the E. coli enzyme.  相似文献   

9.
10.
11.
The structural gene (FDH1) coding for NAD(+)-dependent formate dehydrogenase (FDH) was cloned from a genomic library of Candida boidinii, and the FDH1 gene was disrupted in the C. boidinii genome (fdh1 delta) by one-step gene disruption. In a batch culture experiment, although the fdh1 delta strain was still able to grow on methanol, its growth was greatly inhibited and a toxic level of formate was detected in the medium. In a methanol-limited chemostat culture at a low dilution rate (0.03 to 0.05 h[-1]), formate was not detected in the culture medium of the fdh1 delta strain; however, the fdh1 delta strain showed only one-fourth of the growth yield of the wild-type strain. Expression of FDH1 was found to be induced by choline or methylamine (used as a nitrogen source), as well as by methanol (used as a carbon source). Induction of FDH1 was not repressed in the presence of glucose when cells were grown on methylamine, choline, or formate, and expression of FDH1 was shown to be regulated at the mRNA level. Growth on methylamine or choline as a nitrogen source in a batch culture was compared between the wild type and the fdh1 delta mutant. Although the growth of the fdh1 delta mutant was impaired and the level of formate was higher in the fdh1 delta mutant than in the wild-type strain, the growth defect caused by FDH1 gene disruption was small and less severe than that caused by growth on methanol. As judged from these results, the main physiological role of FDH with all of the FDH1-inducing growth substrates seems to be detoxification of formate, and during growth on methanol, FDH seems to contribute significantly to the energy yield.  相似文献   

12.
13.
The lpd gene encoding lipoamide dehydrogenase (dihydrolipoamide dehydrogenase; EC 1.8.1.4) was isolated from a library of Pseudomonas fluorescens DNA cloned in Escherichia coli TG2 by use of serum raised against lipoamide dehydrogenase from Azotobacter vinelandii. Large amounts (up to 15% of total cellular protein) of the P. fluorescens lipoamide dehydrogenase were produced by the E. coli clone harbouring plasmid pCJB94 with the lipoamide dehydrogenase gene. The enzyme was purified to homogeneity by a three-step procedure. The gene was subcloned from plasmid pCJB94 and the complete nucleotide sequence of the subcloned fragment (3610 bp) was determined. The derived amino acid sequence of P. fluorescens lipoamide dehydrogenase showed 84% and 42% homology when compared to the amino acid sequences of lipoamide dehydrogenase from A. vinelandii and E. coli, respectively. The lpd gene of P. fluorescens is clustered in the genome with genes for the other components of the 2-oxoglutarate dehydrogenase complex.  相似文献   

14.
3-Carboxy-cis,cis-muconate lactonizing enzyme (CMLE; EC 5.5.1.5) from Neurospora crassa catalyzes the reversible gamma-lactonization of 3-carboxy-cis,cis-muconate by a syn-1,2 addition-elimination reaction. The stereochemical and regiochemical course of the reaction is (i) opposite that of CMLE from Pseudomonas putida (EC 5.5.1.2) and (ii) identical to that of cis,cis-muconate lactonizing enzyme (MLE; EC 5.5.1.1) from P. putida. In order to determine the mechanistic and evolutionary relationships between N. crassa CMLE and the procaryotic cycloisomerases, we have purified CMLE from N. crassa to homogeneity and determined its nucleotide sequence from a cDNA clone isolated from a p-hydroxybenzoate-induced N. crassa cDNA library. The deduced amino acid sequence predicts a protein of 41.2 kDa (365 residues) which does not exhibit sequence similarity with any of the bacterial cycloisomerases. The cDNA encoding N. crassa CMLE was expressed in Escherichia coli, and the purified recombinant protein exhibits physical and kinetic properties equivalent to those found for the isolated N. crassa enzyme. We also report that N. crassa CMLE possesses substantially reduced yet significant levels of MLE activity with cis,cis-muconate and, furthermore, does not appear to be dependent on divalent metals for activity. These data suggest that the N. crassa CMLE may represent a novel eucaryotic motif in the cycloisomerase enzyme family.  相似文献   

15.
生物法生产1,3-丙二醇(1,3-Propanediol,1,3-PD)是当前工业生物技术研究的热点之一,生产过程中,需要消耗还原当量NADH,NADH的有效供给决定了1,3-PD的产量和得率。本文采用PCR的方法从Candida boidinii基因组中克隆编码fdh的基因,将该基因片段插入载体pMALTM-p2X,构建表达载体pMALTM -p2X-fdh,并转入醛脱氢酶失活菌Klebsiella pneumoniae DA-1HB,获得重组菌Klebsiella pneumoniae DAF-1。在IPTG浓度0.5 mmol/L时,诱导3 h后甲酸脱氢酶表达明显;发酵过程中甲酸脱氢酶比酶活达到4.82 U/mg;与出发菌株K. pneumoniae DA-1HB相比,重组菌DAF-1合成1,3-丙二醇的浓度提高了19.2%?。  相似文献   

16.
甲酸脱氢酶在Klebsiella pneumoniae中的表达和功能分析   总被引:3,自引:0,他引:3  
在甘油厌氧发酵生产1,3-丙二醇的过程中,需要消耗还原当量NADH,NADH的有效供给决定了1,3-丙二醇的产量和得率。采用PCR方法从Candidaboidinii基因组中克隆编码甲酸脱氢酶基因fdh,将fdh基因片段插入载体pMALTM-p2X中,构建表达载体pMALTM-p2X-fdh,并转入1,3-丙二醇生产菌Klebsiella pneumoniae YMU2,获得重组菌Klebsiella pneumoniae F-1。研究了重组质粒的稳定性和IPTG诱导fdh基因过量表达的条件。结果表明,重组质粒具有良好的稳定性;fdh基因表达的蛋白分子量为40.2kDa;IPTG诱导表达研究表明,在IPTG浓度为0.5mmol/L时,诱导4h后甲酸脱氢酶表达明显;发酵过程中甲酸脱氢酶比酶活达到5.47U/mg;与出发菌株K.pneumoniae YMU2相比,重组菌F-1合成1,3-丙二醇的浓度提高了12.5%。  相似文献   

17.
18.
19.
Selenocysteine incorporation into proteins is directed by an opal (UGA) codon and requires the existence of a stem-loop structure in the mRNA flanking the UGA at its 3' side. To analyze the sequence and secondary-structure requirements for UGA decoding, we have introduced mutations into the fdhA gene from Methanobacterium formicicum, which codes for the alpha subunit of the F420-reducing formate dehydrogenase. The M. formicicum enzyme contains a cysteine residue at the position where the Escherichia coli formate dehydrogenase H carries a selenocysteine moiety. The codon (UGC) for this cysteine residue was changed into a UGA codon, and mutations were successively introduced at the 5' and 3' sides to generate a stable secondary structure of the mRNA and to approximate the sequence of the predicted E. coli fdhF mRNA hairpin structure. It was found that introduction of the UGA and generation of a stable putative stem-loop structure were not sufficient for decoding with selenocysteine. Efficient selenocysteine incorporation, however, was obtained when the loop and the immediately adjacent portion of the putative stem had a sequence identical to that present in the E. coli fdhF mRNA structure.  相似文献   

20.
The genes encoding proteins responsible for activity of the E1 component of branched-chain-oxoacid dehydrogenase of Pseudomonas putida have been subcloned and the nucleotide sequence of this region determined. Open reading frames encoding E1 alpha (bkdA1, 1233 bp) and E1 beta (bkdA2, 1020 bp) were identified with the aid of the N-terminal sequence of the purified subunits. The Mr of E1 alpha was 45,158 and of E1 beta was 37,007, both calculated without N-terminal methionine. The deduced amino acid sequences of E1 alpha and E1 beta had no similarity to the published sequences of the E1 subunits of pyruvate and 2-oxoglutarate dehydrogenases of Escherichia coli. However, there was substantial similarity between the E1 alpha subunits of Pseudomonas and rat liver branched-chain-oxoacid dehydrogenases. In particular, the region of the E1 alpha subunit of the mammalian branched-chain-oxoacid dehydrogenase which is phosphorylated, was found to be highly conserved in the Pseudomonas E1 alpha subunit. There was also considerable similarity between the E1 beta subunits of Pseudomonas branched-chain-oxoacid dehydrogenase and human pyruvate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号