首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In a population of moorhens (Gallinula chloropus), at least27% of netting females laid one or more eggs in a neighbor'snest Females laid parasitically under three conditions: 56%of parasitic eggs were from nesting females that preceded layinga dutch in their own nest by a parasitic laying bout, 19% werefrom females whose nests were depredated before clutch completionand that laid the following egg parasiticaDy, and 25% were froma small number of females without territories, "non-nesting"parasites, that each laid a series of parasitic eggs. Clutchsizes varied greatly between females, but nesting females eachlaid a consistent clutch size both within and between seasonsfor a given mate and territory. Nesting females that employeda dual strategy of brood parasitism and parental care producedextra eggs that they laid in the nests of neighbors before layinga dutch in their own nests. Two out of ten females whose dutchesI experimentally removed during the laying period were successfullyinduced to lay their next egg in the nest of a neighbor. Nestingfemales that laid parasitically selected their hosts opportunisticallyfrom among the nests dosest to their territories. An experimentin which parasitic eggs were removed and hosts left to rearonly their own young showed that parasites did not choose hoststhat were better parents than pairs with contemporary neststhat were not parasitized. Females that only laid parasiticaDywithin a given season timed their parasitic laying bouts poorlyand achieved no reproductive success. Parasitic young rarelyfledged, and the mean seasonal reproductive success of nestingbrood parasites did not differ from that of nonparasitic females.However, the variance in reproductive success of nesting broodparasites was significantly higher than that of nonparasiticfemales.  相似文献   

2.
When parasitoid females encounter a host, they can either lay an egg and thus invest in current reproduction or feed on the host and thus invest in future reproduction. However, hosts could have different values according to their parasitized status. Whereas already parasitized hosts represent poor quality for egg-laying, they could have a high nutritive value for feeding. Moreover, the optimal strategy adopted generally depends on the females’ physiological state. In this study, the impact of the females’ physiological state on their reproductive strategies was investigated in the solitary parasitoid Anisopteromalus calandrae. We analysed how their age and diet influenced (i) the use of hosts (feeding vs. oviposition) and (ii) host selection (previously parasitized vs. unparasitized). Our results show that both age and diet influence the reproductive strategy of A. calandrae females: old females fed with the poorer diet laid fewer eggs and made more host-feeding than others. Females also showed a preference for already parasitized hosts for feeding. This strategy cannot be explained by the nutritive value of haemolymph, as parasitized hosts carry fewer lipids. However, as parasitized hosts are also paralyzed, it could be less costly to feed on them than on unparasitized hosts.  相似文献   

3.
Adamo SA 《Animal behaviour》1999,57(1):117-124
Animals should increase their present reproductive output if their chances for future reproduction are low. However, an animal's ability to make this adjustment may be constrained by the physiological mechanisms mediating the response. To examine this hypothesis, I infected 2- and 5-week-old female crickets, Acheta domesticus, with either a pathogen (the bacterium Serratia marcescens) that induces antimicrobial immune responses, or a parasite (larvae of the parasitoid fly, Ormia ochracea) that induces an encapsulation immune response. Females of both age groups infected with bacteria laid more eggs the day after injection than did saline-injected crickets. A similar increase was elicited by injecting components of the bacterial cell wall (lipopolysaccharides). The bacteria-induced increase in egg laying (1) was not the result of physical stress, (2) did not appear to be a nonspecific response to the infection, and (3) was probably not mediated by octopamine. Females did not increase egg laying when infested with O. ochracea, even though this parasitoid invariably kills its host. Injections of Sephadex beads, which induced an immune response similar to that created by the parasitoids, also had no effect on egg laying. These results are consistent with the hypotheses that crickets can increase egg laying in response to infection and that increased egg output correlates with the activation of some, but not all, immune responses. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

4.
Solitary parasitoids are limited to laying one egg per host because larvae compete within hosts. If host encounter rate is low, females should not increase the number of eggs/host in response. The tachinid fly, Chetogena edwardsii,was used to evaluate the effect of host deprivation on egg accumulation, oviposition behavior, and egg quality in a solitary parasitoid. Females deprived of hosts for 2– 7 days accumulate about 1 day's supply of eggs. Egg output of deprived females once hosts are restored does not differ from that of control females. Deprived females retain one egg in the uterus where it undergoes embryogenesis. Maggots emerging from retained eggs are more likely to survive in hosts molting in 40 h or less after receipt of an egg than are maggots emerging from eggs fertilized shortly before oviposition. Egg retention is a consequence of host deprivation that permits females to broaden the range of hosts they can exploit to include soon-to-molt hosts and possibly multiply parasitized hosts.  相似文献   

5.
Parasitic infections may cause alterations in host life history, including changes in reproductive investment (absolute amount of energy allocated to reproduction) and reproductive effort (proportion of available energy allocated to reproduction). Such changes in host life history may reflect: 1) a parasite tactic: the parasite adaptively manipulates energy flow within the host so that the host is induced to make a reduction in reproductive effort and reproductive investment, making more energy available to the parasite; 2) no tactic: there is no change in host reproductive effort and reproductive investment simply decreases as a side effect of the parasite depleting host energy stores; 3) a host tactic: the host adaptively increases reproductive effort in the face of infection and loss of body condition, reproductive investment possibly being reduced despite the increased reproductive effort. Females in Alaskan lake populations of threespine sticklebacks ( Gasterosteus aculeatus ) are capable of clutch production when parasitized by the cestode Schistocephalus solidus despite large relative parasite masses. We analyzed the somatic energy reserves, maturation stage and ovarian mass of female sticklebacks collected from an Alaska lake during a single reproductive season. We found that parasitized females were less likely to carry fully-matured gametes, had smaller ovarian masses, and had lower somatic energy stores than unparasitized females. The relationship between reproductive investment and energy storage did not differ between parasitized and unparasitized females. Thus, reproductive effort did not change in response to parasitic infection. We conclude there was no indication of either a parasite tactic or a host tactic. Simple nutrient theft is involved in the parasite's influence on host reproduction, consistent with an earlier hypothesis that reproductive curtailment in threespine sticklebacks is a side effect.  相似文献   

6.
李国清  慕莉莉 《生态学报》2006,26(4):1261-1269
综述拟寄生蜂搜索产卵过程中对寄主竞争的最新研究进展.这类竞争具有四种方式,即标记寄主、杀卵和杀幼、守护寄主和捕食寄主.(1)标记寄主常涉及寄主标记信息素,这是由雌蜂在产卵前、产卵时或产卵后分泌的化学物质.寄主标记信息素常介导拟寄生蜂对已寄生和健康寄主的辨别、减少过寄生和多寄生、减轻种内和种间竞争压力.(2)雌蜂遇到已寄生寄主时,很多种类杀死前一雌蜂遗留的卵和幼虫,再产下自己的卵.雌蜂使用三种方法杀卵和杀幼,即产卵器穿刺、取食和使用有毒物质.通过杀卵和杀幼,产卵雌蜂清除了前一雌蜂遗留的后代,主动改善了寄主品质,从而有利于自身后代的生存.(3)守护寄主在肿腿蜂科、缘腹细蜂科、金小蜂科、缨小蜂科和茧蜂科中均有报道,守护者驱逐入侵者以保护后代及健康寄主.(4)捕食寄主不仅减少了健康寄主数量,且直接导致已寄生寄主中拟寄生蜂卵和幼虫的死亡.雌蜂一般在体内成熟卵量较少时捕食寄主.讨论了研究拟寄生蜂搜索产卵过程中竞争寄主的理论意义和实际应用价值.  相似文献   

7.
Conspecific brood parasitism (CBP), females laying eggs in the nest of other ‘host’ females of the same species, is a common alternative reproductive tactic among birds. For hosts there are likely costs of incubating and rearing foreign offspring, but costs may be low in species with precocial chicks such as waterfowl, among which CBP is common. Waterfowl show strong female natal philopatry, and spatial relatedness among females may influence the evolution of CBP. Here we investigate fine‐scale kin structure in a Baltic colony of barnacle geese, Branta leucopsis, estimating female spatial relatedness using protein fingerprints of egg albumen, and testing the performance of this estimator in known mother‐daughter pairs. Relatedness was significantly higher between neighbour females (nesting ≤ 40 metres from each other) than between females nesting farther apart, but there was no further distance trend in relatedness. This pattern may be explained by earlier observations of females nesting close to their mother or brood sisters, even when far from the birth nest. Hosts and parasites were on average not more closely related than neighbour females. In 25 of 35 sampled parasitized nests, parasitic eggs were laid after the host female finished laying, too late to develop and hatch. Timely parasites, laying eggs in the host’s laying sequence, had similar relatedness to hosts as that between neighbours. Females laying late parasitic eggs tended to be less related to the host, but not significantly so. Our results suggest that CBP in barnacle geese might represent different tactical life‐history responses.  相似文献   

8.
ABSTRACT.   The reproductive success of parasitic cowbirds ( Molothrus spp.) varies among host species and is influenced by the degree of synchronization in timing of egg laying, the duration of parasite and host incubation periods, and the ability of hosts to incubate and rear parasite young. We studied the reproductive success of Shiny Cowbirds ( Molothrus bonariensis ) that parasitized the nests of Creamy-bellied Thrushes ( Turdus amaurochalinus ) in the Monte desert region of Argentina. Shiny Cowbirds frequently parasitized Creamy-bellied Thrush nests (60%), and most cowbirds synchronized egg laying with that of thrushes (79%). Most parasitic eggs (80%) hatched within 1 d of the hatching of the first host egg, and more than 91% of the eggs survived until the end of the incubation. However, only 60% of the cowbird eggs hatched and 52% of young survived. The proportion of Shiny Cowbirds eggs laid in Creamy-bellied Thrush nests that resulted in fledged young was 0.03, including eggs and young lost due to predation or desertion. Despite this low reproductive success, Creamy-bellied Thrushes were heavily parasitized by Shiny Cowbirds in our study area. Shiny Cowbirds may continue to parasitize these thrushes because of diffuse selection or because Shiny Cowbird chicks are more likely to fledge from Creamy-bellied Thrush nests in years or areas with greater food availability when brood reduction does not occur.  相似文献   

9.
The trade‐off between the allocation of resources toward somatic maintenance or reproduction is one of the fundamentals of life history theory and predicts that females invest in offspring at the expense of their longevity or vice versa. Mate quality may also affect life history trade‐offs through mechanisms of sexual conflict; however, few studies have examined the interaction between mate quality and age at first mating in reproductive decisions. Using house crickets (Acheta domesticus), this study examines how survival and reproductive trade‐offs change based on females’ age at first reproduction and exposure to males of varying size. Females were exposed to either a large (presumably high‐quality) or small male at an early (young), middle (intermediate), or advanced (old) age, and longevity and reproductive investment were subsequently tracked. Females mated at a young age had the largest number of eggs but the shortest total lifespans while females mated at older ages produced fewer eggs but had longer total lifespans. The trade‐off between age at first mating and eggs laid appears to be mediated through higher egg‐laying rates and shorter postmating lifespans in females mated later in life. Exposure to small males resulted in shorter lifespans and higher egg‐laying rates for all females indicating that male manipulation of females, presumably through spermatophore contents, varies with male size in this species. Together, these data strongly support a trade‐off between age at first reproduction and lifespan and support the role of sexual conflict in shaping patterns of reproduction.  相似文献   

10.
Although historically understudied, parasites may play an important role in freshwater invertebrate population ecology and evolution. We quantified abundance of parasitic mites and trematodes in the freshwater mussel Pyganodon grandis, in a southeastern Alabama stream (USA), to assess parasite impact on adult mussel physiological condition and reproductive output. We used stepwise multiple regression analyses to assess the effects of mussel size and parasites on reproduction and condition. Multiple regression analysis found no multivariate models that predicted reproductive output or physiological condition. However, univariate models revealed that increased parasite densities predict reduced mussel reproductive output and physiological condition. These findings suggest that parasites may have important negative consequences for freshwater mussels. We hypothesize that elevated parasite loads may reduce mussel fitness in impounded or nutrient-enriched streams with high densities of intermediate hosts (chironomid midges).  相似文献   

11.
Copepods from the genus Ismaila are large endoparasites that inhabit the main body cavity and/or cerata of opisthobranch molluscs. These parasites exhibit many life history characteristics typically found in parasitic castrators, yet the actual impact of infection on reproduction, growth or survivorship of the hosts are unknown. On the Oregon (USA) coast, Ismaila belciki can infect over 80% of their hermaphroditic hosts, Janolus fuscus. In laboratory mating experiments, we compared the reproductive output (egg mass weight, number of egg capsules, number of viable embryos) and the gonadal somatic index of infected versus uninfected J. fuscus. Infected J. fuscus could produce viable sperm and copulate. Mating with an infected individual did not limit a sea slug’s reproductive output. However, infected J. fuscus had significantly lower reproductive output (by 34–54%), producing smaller egg masses with fewer capsules and viable embryos. Infected hosts had significantly lower gonadal somatic index than their uninfected counterparts, although there was no significant difference in gonadal somatic index between hosts with single and double infections. By collecting the egg sacs produced by the copepod parasite during experiments, we estimated that 25–34% of the host’s reproductive output is usurped by the parasite and re-directed to the parasite’s own reproduction. In the laboratory, infection did not alter growth in J. fuscus. However, infection significantly decreased survivorship in mature (but not immature) nudibranch hosts. These results suggest that I. belciki is not a true castrator, but it does reduce the reproductive output of its host and may therefore limit the natural population size of J. fuscus.  相似文献   

12.
White-fronted bee-eaters are colonially breeding birds that exhibit highly developed helping-at-the-nest. Through long-term studies of an individually-marked population, we have documented two costs of social living: 1) harassment of mated females by extra-pair males, and 2) intra-specific parasitism by females who lay eggs in the nests of others. Breeding females are sexually chased and, occasionally, forceably mated by males other than their mates. Focal-sampling of females throughout their period of receptivity revealed that the average female is involved in 5 to 8 sexual chases and is forceably copulated 0.15 to 0.23 times per breeding season. This risk to females would be much greater were it not for the behavior of male mates who remain close to, and actively defend, their partners. Such mate-guarding is highly effective — females entering and leaving the colony in consort with their mates are sexually harassed only 1/10 as often as females travelling alone. Although sexual harassment of females is common at bee-eater colonies, the risk of paternity uncertainty arising from forced copulations is thought to be low. The reason is that females copulate repeatedly with their male mates on all days immediately prior to as well as during egg laying. This point has been overlooked in previous reports and has led to an exaggeration of the paternity risks associated with forced sexual chases. We conclude that sexual chasing of extra-pair females is a low yield reproductive tactic employed primarily by monogamously mated males whose presence at the colony is required to allofeed and mateguard their own egg-laying females. Female white-fronted bee-eaters lay eggs in nests other than their own. This intraspecific parasitism constitutes a greater threat to certainty of parentage than does forced copulation. Over four years of study, 16% of nests were parasitized and 7 % of all eggs were laid by a female other than the breeder (Table 2). Parasitizing females come primarily from two sources: (1) members of mated pairs whose own breeding attempt is disrupted at the time of egg laying, and (2) single females who opportunistically add an egg at the nest of their parents (or parent plus step-parent). In each case of kin-parasitism, the “parasitic” female remained socially integrated with the host group and helped in the rearing of the young. In contrast, 9 of 10 females that parasitized the nests of non-relatives had no other interactions with the hosts (Table 3). Parasitizing females exhibited two specialized behaviors that enhanced their reproductive effectiveness: (1) they spent many hours observing, investigating, and testing the defenses of potential host nests, and (2) they preferentially laid in hosts' nests at the appropriate chronological stage of development. Breeding females also exhibited counterbehaviors against being parasitized. These included: (1) remaining sequestered in their nest chambers for 64%-65% of the daylight hours and 94 % of the pre-roost hours during their days of egg laying, (2) aggressively defending their nest entrances against all investigating (potentially parasitic) females, and (3) actively removing any eggs laid in their nests prior to the initiation of their own clutch. These tactics and countertactics suggest a long evolutionary history of parasitic opportunities and risks among white-fronted bee-eaters.  相似文献   

13.
Conspecific brood parasitism (CBP) is a reproductive tactic in which parasitic females lay eggs in nests of other females of the same species that then raise the joint brood. Parasites benefit by increased reproduction, without costs of parental care for the parasitic eggs. CBP occurs in many egg‐laying animals, among birds most often in species with large clutches and self‐feeding young: two major factors facilitating successful parasitism. CBP is particularly common in waterfowl (Anatidae), a group with female‐biased natal philopatry and locally related females. Theory suggests that relatedness between host and parasite can lead to inclusive fitness benefits for both, but if host costs are high, parasites should instead target unrelated females. Pairwise relatedness (r) in host–parasite (h‐p) pairs of females has been estimated using molecular genetic methods in seven waterfowl (10 studies). In many h‐p pairs, the two females were unrelated (with low r, near the local population mean). However, close relatives (r = 0.5) were over‐represented in h‐p pairs, which in all 10 studies had higher mean relatedness than other females. In one species where this was studied, h‐p relatedness was higher than between nesting close neighbours, and hosts parasitized by non‐relatives aggressively rejected other females. In another species, birth nest‐mates (mother–daughters, sisters) associated in the breeding area as adults, and became h‐p pairs more often than expected by chance. These and other results point to recognition of birth nest‐mates and perhaps other close relatives. For small to medium host clutch sizes, addition of a few parasitic eggs need not reduce host offspring success. Estimates in two species suggest that hosts can then gain inclusive fitness if parasitized by relatives. Other evidence of female cooperation is incubation by old eider Somateria mollissima females of clutches laid by their relatives, and merging and joint care of broods of young. Merging females tended to be more closely related. Eiders associate with kin in many situations, and in some geese and swans, related females may associate over many years. Recent genetic evidence shows that also New World quails (Odontophoridae) have female‐biased natal philopatry, CBP and brood merging, inviting further study and comparison with waterfowl. Kin‐related parasitism also occurs in some insects, with revealing parallels and differences compared to birds. In hemipteran bugs, receiving extra eggs is beneficial for hosts by diluting offspring predation. In eggplant lace bugs Gargaphia solani, host and parasite are closely related, and kin selection favours egg donation to related females. Further studies of kinship in CBP, brood merging and other contexts can test if some of these species are socially more advanced than presently known.  相似文献   

14.
Induced responses of nestling great tits reduce hen flea reproduction   总被引:3,自引:0,他引:3  
The dynamics of host–parasite interactions depend to a large extent on the effect of host responses on parasite fitness. Exposure to parasites may induce behavioural or physiological responses in hosts that may reduce the subsequent survival or reproductive output of the parasite. Neonate hosts may further directly obtain immunologically active substances from their mother, for instance via milk in mammals or egg yolk in birds. However, the relative importance of maternally‐derived and self‐generated responses in inducing parasite resistance is poorly understood, especially in free‐living vertebrates. Here we investigate the complementary effect of experimentally induced maternal and neonate responses in great tit (Parus major) hosts on the reproductive success of their common ectoparasite, the hen flea (Ceratophyllus gallinae). In the laboratory we measured the number of eggs and larvae produced by individual flea females collected from host nests. In addition, the total number of larvae produced by an experimentally set number of flea females in the host's nestbox was assessed under field conditions. There was no indication of maternally‐transferred parasite resistance, since exposing the mother to fleas during the laying period did not affect the reproductive rate of fleas exploiting her offspring early or late in the nestling cycle. Independent of the maternal treatment, exposure of neonates to fleas early in the nestling period reduced the reproductive output of fleas late in the nestling cycle. The effect of the induced nestling response was seasonal, reducing flea reproduction in nests of early‐breeding hosts but not in nests of late‐breeding ones. Larvae production in the nestbox and in the laboratory was positively correlated, but under natural conditions the neonate response did not affect the size of the flea larvae population. Our results indicate induced responses as a means by which neonate avian hosts resist ectoparasites. Other factors, such as the environmental temperature and density‐dependent larval competition, may be more important in determining the size of the future parasite populations.  相似文献   

15.
Summary: We report data from a four-year field study on the relationship between colony size and reproduction in the western harvester ant, Pogonomyrmex occidentalis. In all years, the likelihood of reproduction significantly increased with increasing size in both field censuses during naturally-occurring mating flights and experimentally-watered colonies whose entire reproductive output was collected. However, the total amount of reproductive biomass was unrelated to colony size. We describe the size threshold for reproduction in P. occidentalis and show that it varies across years. Once colonies become reproductively mature, they reproduce consistently although not in every year. We describe a method for collecting the entire reproductive output for desert ants whose reproductive flights are cued by rainfall.  相似文献   

16.
Parasitic plants often have a strong fitness‐impact on their plant hosts through increased host mortality and reduced or complete suppression of reproduction. Tristerix corymbosus (Loranthaceae) is a hemiparasitic mistletoe that infects a wide range of host species along its distribution range. Among such species, Rhaphithamnus spinosus (Verbenaceae) is a frequent host with a flowering and fruiting season partially synchronized with mistletoe reproductive phenology. As parasitized hosts have, in principle, a larger flower display and fruit crop size than non‐parasitized hosts, we examined whether host and parasite reproductive synchrony make infected hosts more attractive for pollinators and seed dispersers than uninfected hosts. Our results showed that pollinator visit rates did not differ between parasitized and non‐parasitized hosts. Conversely, seed rain was higher in parasitized than non‐parasitized individuals. The number of seeds fallen under non‐parasitized plants was spatially associated with crop size, while parasitized plants did not show such association. Finally, the number of seedlings of R. spinosus was significantly larger near parasitized than non‐parasitized hosts. Our results suggest that the presence of the mistletoe might be responsible of the higher reproductive success showed by the parasitized fraction of R. spinosus. This effect, however, seems to be related to seed dispersal processes rather than pollination effects.  相似文献   

17.
Isolation by time occurs when different populations of a single species reproduce at different times and thereby reduce the probability of interbreeding, potentially causing divergent adaptation to timing of reproduction, eventually resulting in ecological species separated by timing of reproduction. We analysed extensive data on timing of reproduction by different host races of the common cuckoo Cuculus canorus that is an obligate brood parasite laying eggs in the nests of many different species of passerine birds. Because different hosts breed at different times, specific host races of cuckoos have adapted to specific hosts by laying eggs when nests of these hosts are available, and such divergence may be further exaggerated by differences in timing of breeding among host races with similar habitat requirements. Host species accounted for a quarter of the variance in timing of breeding by the cuckoo. Common cuckoos reproduced at a similar, but narrower subset of dates as did possible hosts, showing that only a fraction of hosts with specific breeding dates were parasitized. Common cuckoo eggs laid in the 'right' kind of nests, phenotypically matching the eggs of the host, were laid later during the season than cuckoo eggs laid in the 'wrong' kind of nests where the eggs did not mimic those of the host. Pairs of sympatric cuckoo host races differed more in timing of breeding than pairs of allopatric host races, and pairs of cuckoo host races with similar breeding habitat differed more in breeding date than pairs of cuckoo host races with dissimilar habitat, as expected from reproductive character displacement. These findings are consistent with cuckoo host races being isolated by timing of breeding and habitat.  相似文献   

18.
《Animal behaviour》1988,36(1):262-284
At study sites in Cambridgeshire, England, the percentage of reed warbler, Acrocephalus scirpaceus, nests parasitized by cuckoos, Cuculus canorus, in 2 years was 22·5% and 9·1%. The warblers rejected cuckoo eggs at 19% of parasitized nests. Parasitized clutches suffered less predation than unparasitized clutches, suggesting that the cuckoo itself was the major predator, plundering nests too advanced for parasitism so that the hosts would re-lay. The cuckoos laid a mimetic egg, parasitized nests in the afternoons during the host laying period, usually removed one host egg, laid a remarkably small egg and laid very quickly. Nests were experimentally parasitized with model eggs to study the significance of this procedure. Experiments showed that host discrimination selects for: (1) egg mimicry by cuckoos (poorer matching model eggs were more likely to be rejected); (2) parasitism during the laying period (mimetic eggs put in nests before host laying began were rejected); (3) afternoon laying (mimetic eggs were less likely to be accepted in the early morning than in the afternoon, when hosts were more often absent from the nest); (4) a small egg (large eggs, typical of non-parasitic cuckoos, were more likely to be rejected); (5) rapid laying (a stuffed cuckoo on the nest stimulated increased rejection of model eggs), and (6) sets a limit to host egg removal by cuckoos (if more than one or two are removed desertion may occur). Mimicry may also be selected for because it reduced the chance that second cuckoos can discriminate the first cuckoo's egg from the host's clutch. Predation did not select for mimicry; nests with a non-mimetic egg did not suffer greater predation than those with a mimetic egg. Host rejection of model eggs did not depend on: (1) stage of parasitism once host egg laying had begun (nevertheless cuckoos were more likely to lay early in the host laying period probably to increase the chance the cuckoo chick hatched); (2) removal of a host egg (however, this reduced the incidence of unhatched eggs so cuckoos may remove a host egg so as not to exceed the host incubation limit). There were two costs of rejection, an ‘ejection’ cost (own eggs ejected as well as the cuckoo egg) and, with mimetic eggs, a ‘recognition’ cost (own eggs ejected instead of the cuckoo egg). Reed warblers did not discriminate against unlike chicks (another species) and did not favour either a cuckoo chick or their own chicks when these were placed in two nests side by side. Possible reasons why the hosts discriminate against unlike eggs but not unlike chicks are discussed.  相似文献   

19.
One of the best‐known outcomes of coevolution between species is the rejection of mimetic parasite eggs by avian hosts, which has evolved to reduce costly cuckoo parasitism. How this behavioral adaptation varies along the life of individual hosts remains poorly understood. Here, we identify for the first time, lifetime patterns of egg rejection in a parasitized long‐lived bird, the magpie Pica pica and show that, during the years they were studied, some females accept, others reject, and some others modify their response to model eggs, in all cases switching from acceptance to rejection. Females tested in their first breeding attempt always accepted the model egg, even those individuals whose mothers were egg rejecters. A longitudinal analysis showed that the probability of egg rejection increased with the relative age of the female, but was not related to the risk of parasitism in the population. We conclude that ontogeny plays a fundamental role in the process leading to egg rejection in magpies.  相似文献   

20.
We compared the length of time parasitic and nonparasitic female birds spent on nests while laying eggs (laying bouts) to evaluate the hypothesis that rapid laving by parasitic Brown-headed Cowbirds Molothrus ater and other parasitic birds is a specialization for brood parasitism. Brown-headed Cowbirds typically spent less than 1 min on host nests while laying (41.0 ± 4.58 [mean ± s.e.] s, n = 21). In contrast, mean laving bouts of six nonparasitic icterine species ranged from 21.5 min to 53.4 min, and laying bouts of 13 other passerine species ranged from 20.7 min to 103.7 min. By spending only a few seconds on the nest while laying, brood parasites probably increase their chances of parasitizing nests unnoticed by hosts or, if noticed, are harassed by hosts for less time. Rapid laying may be adaptive if aggression by hosts can thwart attempted parasitism by chasing away the parasite, preventing the parasite from entering the nest or injuring the parasite. Rapid laying may increase the likelihood that the parasitic egg will be accepted. We tested some of these hypotheses by recording the responses of three frequently parasitized species to a stuffed female cowbird placed on their nests for 1 min. All species attacked the model vigorously; however, the mean time for discovery of the model ranged from 3 min to 17 min, ample time for female cowbirds to parasitize the nests. We concluded that rapid laying by parasitic birds is an adaptation for parasitism and, in Brown-headed Cowbirds, reduces the chances that the parasite will be attacked by hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号