首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Post-spawning salmon carcasses are broadly recognized as a source of organic matter- and marine-derived nutrients (MDN) in Pacific salmon streams, but MDN delivery and retention processes are not well understood. Recent studies emphasize the interaction of inorganic particulate matter and salmon organic matter, through flocculation, as a delivery mechanism for MDN to the streambed. This study builds upon previous flocculation studies to look at nitrogen delivery and storage within the gravel bed of a re-circulating flume. Findings indicate that nitrogen storage in surface and interstitial water is lower than sediment-associated nitrogen. Flocculation of salmon organic matter and inorganic sediment is presented as a delivery mechanism in spawning and post-spawning periods that helps to maintain ecological productivity within Pacific salmon streams. Based on these findings it is recommended that salmon enhancement activities should include leaving post-spawn carcasses in-stream and that fertilization programs should consider flocculation processes to increase nutrient delivery to the streambed.  相似文献   

2.
The flocculation mechanism dominates the fate of suspended matter in the estuarine environment. By modifying the texture of suspended matter, flocculation is one of the principle factors determining the transport and deposition of suspended matter in estuaries. Surveys of the seasonal variation of dispersed particle and non-dispersed particle characteristics, organic matter content as well as suspended matter deposition in two contrasting intertidal environments, one freshwater and one brackish water, in the Scheldt estuary were undertaken at fortnightly intervals for a year. The study of non-dispersed particle, i.e. floc, is mainly focused on floc size, shape, and microstructure, properties presumed to be significant in the suspended matter transport processes in the estuary. In this study, floc size as well as floc sphericity correlate positively with the change of organic matter content and reveal that floc grows in a three-dimensional way with increasing organic matter. It is observed that relatively condensed, small and elongated flocs appear in winter and spring periods, while loose, large and spherical flocs occur during the summer. The study also reveals that suspended matter transported as dense flocs with size range of ca. 105–250 m have a greater effect on its short-term deposition than loose flocs with size range of ca. 250–500 m. As the measured suspended matter deposition is much higher in winter–spring than in summer, it is deduced here that highly compact and relatively dense flocs contribute to deposition during winter and spring periods resulting in a stable layer, while loosely formed flocs likely lead to an easier erodible layer during the summer. This study concludes that floc structure-related density is a more significant parameter than floc size in the suspended matter deposition processes.  相似文献   

3.
Flocculent materials (floc), in aquatic systems usually consist of a non-consolidated layer of biogenic, detrital material relatively rich in organic matter which represents an important food-web component for invertebrates and fish. Thus, variations in its composition could impact food webs and change faunal structure. Transport, remineralization rates and deposition of floc may also be important factors in soil/sediment formation. In spite of its relevance and sensitivity to external factors, few chemical studies have been carried out on the biogeochemistry of floc material. In this study, we focused on the molecular characterization of the flocculent organic matter (OM), the assessment of its origin and its environmental fate at five stations along a freshwater to marine ecotone, namely the Taylor Slough, Everglades National Park (ENP), Florida. To tackle this issue, suspended, unconsolidated, detrital floc samples, soils/sediments and plants were analyzed for bulk properties, biomarkers and pigments. Both geochemical proxies and biomass-specific biomarkers were used to assess OM sources and transformations. Our results show that the detrital organic matter of the flocculent material is largely regulated by local vegetation inputs, ranging from periphyton, emergent and submerged plants and terrestrial plants such as mangroves, with molecular evidence of different degrees of diagenetic reworking, including fungal activity. Evidence is presented for both hydrodynamic transport of floc materials, and incorporation of floc OM into soils/sediments. However, some molecular parameters showed a decoupling between floc and underlying soil/sediment OM, suggesting that physical transport, incorporation and degradation/remineralization of OM in floc may be controlled by a combination of a variety of complex biogeochemical variables including hydrodynamic transport, hydroperiod characteristics, primary productivity, nutrient availability, and OM quality among others. Further investigations are needed to better understand the ecological role of floc in freshwater and coastal wetlands.  相似文献   

4.
Data extracted from video recordings of individual estuarine flocs near the estuary bed during the advance and retreat of the salt intrusion show changes in size and settling velocity distributions. The recordings were taken using INSSEV —IN Situ SEttling Velocity instrument. Size coupled with effective density variations due to both changes in floc structure and ambient salinity result in changes in the settling velocity during the tidal cycle. In particular, just after high water slack, the appearance of high settling velocity medium size flocs and individual particles suggest that the lower density flocs have been broken up by the intense vertical shear in the currents caused by the salt wedge intrusion. Current shear is shown to have a significant influence on floc effective density.  相似文献   

5.
Synopsis Analysis of frozen cores of gravel surrounding the egg pockets of chum salmon, Oncorhynchus keta, collected in the fall revealed that spawning activity by females purged about 75 % of the fine sediments from the stream bed. The egg pocket was one of four distinct vertical strata detected in the cores. There was an undisturbed layer below the egg pocket, and separate bridge and cover strata above the egg pocket, all defined by different particle size distributions. However, by spring most of the egg pockets had been infiltrated with fine sediment and the particle size distribution approached background levels. The most likely physical factors responsible for these results were: (1) intrusion of fine sediments through the cleaned surface gravel, (2) lateral subsurface migration of fine sediment into interstitial voids, (3) scour of the surface gravel and subsequent deposition of a sand rich bedload, and (4) superimposed spawning activity of other fish, causing disturbance of the cleaned surface gravel and exposing the egg pocket to intrusion of fine particles. We conclude that, while female salmon substantially affect the physical environment of their embryos, subsequent sediment transport processes and fine bedload flux tend to return this environment to pre-spawning conditions.  相似文献   

6.
Lake sturgeon spawning on artificial habitat in the St Lawrence River   总被引:2,自引:0,他引:2  
In 1996, lake sturgeon (Acipenser fulvescens) spawning was documented for the third consecutive year on an artificially placed gravel bed in the St Lawrence River. Two distinct spawning periods were observed in 1996. Spawning initially commenced on 17 June, when water temperature reached 15°C. A second spawning event was documented from 28 June to 1 July (16°C). Sturgeon egg densities were monitored in three transects on egg trays, on the gravel surface, and within interstitial spaces in the gravel. Counts of developing eggs in the gravel bed during both spawning periods were used to estimate a total of 275 000 eggs on the study area (0.075 ha). Average egg density was highest in the transect with the highest water velocities. Lake sturgeon fry were first observed in the gravel on 24 June (15.5°C), and first emergence from the gravel was documented on 28 June. Hatching following the second spawning event commenced on 3 July. Based on assessment of average embryo viability (61.6%) and egg‐to‐emergent fry survival (17.6%) an estimate of about 171 000 sturgeon eggs hatched, producing over 49 000 emergent fry. Current velocity, substrate particle size, depth of substrate, and maintenance of sediment‐free interstitial spaces are important considerations in planning future spawning habitat enhancement projects.  相似文献   

7.
Gravel augmentation is often applied to rivers and streams to rehabilitate salmonid spawning and incubation habitat. However, the effect of gravel size on salmon spawning utilization and embryo survival during incubation is not well understood. We conducted an experiment on a regulated and previously mined Northern California salmonid‐bearing stream in which different sized gravel (small, medium, and large) patches were placed into the stream's degraded spawning reach. We documented Oncorhynchus tshawytscha (Chinook salmon) spawning activity within the three gravel sizes for two seasons. In addition, we deployed Chinook salmon embryos into each gravel size patch and allowed them to incubate until estimated emergence time. Although all experimental gravel sizes were predicted to be within the spawning population's mobilization capabilities, model results indicated the probability of salmon building redds decreased as substrate size increased. Conversely, embryo survival increased as gravel size increased. A possible mechanism of disparate Chinook salmon embryo survival is provided by an observed decrease in embryo survival correlating with greater presence of embryo predators (leeches), which are associated with smaller gravel. Our results indicate a parent‐offspring conflict in optimal spawning gravel size for Chinook salmon, and suggest that an intermediate gravel size would maximize overall reproductive success across both spawning and incubation life stages.  相似文献   

8.
Microalgal bacterial floc (MaB‐floc) reactors have been suggested as a more sustainable secondary wastewater treatment. We investigated whether MaB‐flocs could be used as tertiary treatment. Tertiary influent has a high inorganic/organic carbon ratio, depending on the efficiency of the secondary treatment. In this study, the effect of this inorganic/organic carbon ratio on the MaB‐flocs performance was determined, using three sequencing batch photobioreactors. The MaB‐flocs were fed with synthetic wastewater containing 84, 42, and 0 mg L−1 C‐KHCO3 supplemented with 0, 42, 84 mg L−1 C‐sucrose, respectively, representing inorganic versus organic carbon. Bicarbonate significantly decreased the autotrophic index of the MaB‐flocs and resulted in poorly settling flocs. Moreover, sole bicarbonate addition led to a high pH of 9.5 and significant lower nitrogen removal efficiencies. Sucrose without bicarbonate resulted in good settling MaB‐flocs, high nitrogen removal efficiencies and neutral pH levels. Despite the lower chlorophyll a content of the biomass and the lower in situ oxygen concentration, 92–96% of the soluble COD‐sucrose was removed. This study shows that the inorganic/organic carbon ratio of the wastewater is of major importance and that organic carbon is requisite to guarantee a good performance of the MaB‐flocs for wastewater treatment. Biotechnol. Bioeng. 2011; 108:549–558. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Measuring Floc Structural Characteristics   总被引:1,自引:0,他引:1  
A review is presented of a range of techniques for the structural characterisation of flocs. Flocs may be considered as highly porous aggregates composed of smaller primary particles. The irregular size and shape of flocs makes them difficult to measure and quantify. A range of different equivalent diameters are often used to define the floc size and allow comparison with other floc systems. The application of a range of floc sizing methods has been described. Microscopy is time consuming, requiring large sample size and considerable preparation but gives good information on floc shape and form. Light scattering and transmitted light techniques have been used to good effect to measure floc size on-line whilst individual particle sensors have limited applicability to measuring floc size. Fractal dimension can be measured using one of three major techniques: light scattering, settling and two dimensional (2D) image analysis. Light scattering is ideally suited for small, open flocs of low refractive index whilst settling may be applied to most floc systems of low porosity. 2D image analysis requires flocs to have good contrast between the solid in the floc and the background.  相似文献   

10.
Spatial uptake of dissolved organic carbon in river beds   总被引:3,自引:2,他引:1  
The uptake of dissolved organic carbon by three stream bed components; surface stones, underlying gravel and organic floc was measured in three rivers in North Wales, U.K. Overall, surface stones and underlying gravel appeared to be the major sites of uptake but the relative importance of these two components varied both temporally and spatially. Organic floc was found to be relatively unimportant as a site of dissolved organic carbon uptake.  相似文献   

11.
12.
Dense flocs readily form in continuous culture bioreactors used for hydrogen production, but the fractal and hydrodynamic properties of these flocs have not been previously analyzed. We therefore examined the size distribution, fractal dimension, and hydrodynamic properties of flocs formed in a continuous flow, well-mixed reactor treating synthetic wastewater at a fixed condition of a 4.5 h hydraulic detention time (23 degrees C, pH 5.5). The reactor was operated for a total of 3 months at three different organic loading rates (27, 53, and 80 g-COD/L-d) with influent glucose concentrations of 5, 10, and 15 g-COD/L. At all three loading rates the removal of glucose was nearly complete (98.6-99.4%) and biomass was produced in proportion to the organic loading rate (0.86 +/- 0.11, 2.40 +/- 0.26, and 4.59 +/- 1.55 g/L of MLVSS in the reactor). Overall conversion efficiencies of glucose to hydrogen, evaluated on the basis of a maximum of 4 mol-H2/mol-glucose, increased with organic loading rates in the order 17.7%, 23.1%, and 25.6%. The gas contained 56.1 +/- 4.9% hydrogen, with the balance as carbon dioxide. No methane gas was detected. Under these conditions, flocs were produced with mean sizes that increased with organic loading, in the order 0.12 cm (5 g-COD/L), 0.35 cm (10 g-COD/L), and 0.58 cm (15 g-COD/L). As the average floc size increased, the flocs became on average denser and less fractal, with fractal dimensions increasing from 2.11 +/- 0.17 to 2.48 +/- 0.13. Floc porosities ranged from 0.75-0.96, and resulted in aggregate densities that allowed little intra-aggregate flow through the floc. As a result, average settling velocities were not appreciably larger than those predicted by Stokes' law for spherical, impermeable flocs. Our results demonstrate that dense, relatively impermeable flocs are produced in biohydrogen reactors that have settling properties in reasonable agreement with Stokes' law.  相似文献   

13.
Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

14.
Because allochthonous organic matter (OM) loading supplements autochthonous OM in supporting lake and reservoir food webs, C and N elemental and isotopic ratios of sedimenting particulate OM were measured during an annual cycle in a polymictic, eutrophic reservoir. Particulate organic C and N deposition rates were greatest during winter and lowest during spring. C:N ratios decreased through our study indicating that OM largely originated from allochthonous sources in winter and autochthonous sources thereafter. δ13C were influenced by C4 plant signatures and became increasingly light from winter through autumn. δ15N indirectly recorded the OM source shift through nitrate utilization degree with maximum values occurring in May as nitrate concentrations decreased. Unlike relationships from stratified systems, δ13C decreased with increasing algal biomass. This relationship suggests that minimal inorganic C fixation relative to supplies maintained photosynthetic isotopic discrimination during productive periods. Water column mixing likely maintained adequate inorganic C concentrations in the photic zone. Alternatively, OM isotopic composition may have been influenced by changing dissolved inorganic nutrient pools in this rapidly flushed system. δ15N also recorded increased N2 fixation as nitrate concentrations declined through autumn. Secondary sediment transport mechanisms strongly influenced OM delivery. Particulate organic C and N deposition rates were 3× greater near the sediment-water interface. Isotopic ratio mixing models suggested that river plume sedimentation, sediment resuspension, and horizontal advection influenced excess sediment deposition with individual mechanisms being more important seasonally. Our findings suggest that allochthonous OM loading and secondarily-transported OM seasonally supplement phytoplankton production in productive reservoirs.  相似文献   

15.
D. Eisma  S. Chen  A. Li 《Aquatic Ecology》1994,28(3-4):267-274
In-situ floc size measurements were made in suspended matter of the Elbe and Dollard estuaries. Floc size was found to be generally smaller in the surface water than in the bottom water and varied systematically with time in relation to the tidal phase. Maximum floc size was also related to particle concentration and, in the Dollard, probably also to flow on and off the tidal flats. Salinity and the total organic matter content of the suspended matter played a minor or no role. Since flocs break up into uniform size distributions during sampling and analysis, Coulter counter particle size was about constant during the tidal cycle. temporarily at Netherlands Institute for Sea Research, Texel, The Netherlands.  相似文献   

16.
Summary Populations ofZymomonas mobilis flocs, cultivated in a continuous tower reactor, can be completly described with a single parameter: the settling velocity. The floc size distribution is directly linked to the average settling rate. This property will simplify the design of continuous settlers.  相似文献   

17.
Vertical hydraulic gradient, channel hydraulic, and substratum data were collected at active chum salmon redds to evaluate their influence on redd site selection in the Kwethluk River, a wandering gravel-bedded tributary of Alaska’s Lower Kuskokwim River. Two distinct summer chum salmon spawning tacitcs: primary- and off-channel groups spawning in different hydraulic and thermal environments. Channel hydraulics, ground-surface water exchanges, and bed sediment data were collected throughout the range of topographic conditions at sites occupied and unoccupied by spawners. Analyses of these data showed that redd site selection was incoherent with channel hydraulics and substratum size, when all channel types were considered. Rather, spawning was associated with the exchange of river and groundwater at four spatial scales. In primary channels, chum salmon spawned only in reaches where the regional hydraulic gradient (regional scale) promoted the penetration of river water, or downwelling, into the bed sediments. Within these reaches, primary-channel spawning was influenced by bed topography (fluvial scale) that promoted strong localized downwelling; a logit model, fitted to constituent hydraulics, discriminated between selected and unselected sites with 89 % accuracy. In contrast, spawners in off-channel habitats (flood and spring channels) selected areas of upwelling groundwater, regardless of channel hydraulics and the regional hydraulic gradient. In parafluvial flood channels, spawners selected localized upwelling associated with short groundwater flow paths (parafluvial scale). In spring channels, within the floodplain’s forested riparia (orthofluvial scale), spawners eschewed areas of localized downwelling and uniformly selected upwelling zones feeding these channels. Thus, redd selectivity differentiated two spawning tactics (groups) in this complex channel network where ground and surface water exchange is an important predictor of spawning habitat.  相似文献   

18.
19.
During one tidal period, measurements of the variation of current velocities, suspended sediment concentration and settling velocities of the suspended matter were carried out on a tidal mud flat 1.8 km west of Ballum Sluse in the northern part of the Lister Dyb tidal basin. The settling velocities have been converted to equivalent settling diameters. Current velocities follow a variation pattern well-known from other parts of the Wadden Sea. Variations in current velocities are responsible for the variation in suspended sediment concentration and thereby indirectly control the equivalent particle sizes, because high suspended sediment concentration favours the formation of flocs. Maximum concentrations of up to 532 mg/l were recorded at the beginning of the flood period and at the end of the ebb period, when current velocities are high. This is reflected in the median equivalent settling diameters, which show corresponding high values of 83 μm at the beginning of the flood period and 96 μm at the end of the ebb period.  相似文献   

20.
Flocculating agents are used as auxiliary to recover bacterial cells in downstream processes for polyhydroxyalkanoate production. However little is known about the Curpiavidus necator flocs. In this work a new procedure for floc characterization through digital image analysis is presented and validated using the batch settling test. Average diameter, particle size distribution and morphological characteristics of the microbial aggregates were obtained from the flocculation/sedimentation process of the Cupriavidus necator DSM 545 cells by the use of tannin as flocculating agent. The experimental results demonstrated that the proposed method is adequate to determine the average floc diameter with values around 150 μm in accordance with the value obtained from the batch settling test. Nevertheless a morphological characterization of Cupriavidus necator DSM 545 bioaggregates in terms of size distribution and regularity could only be performed by an image analysis procedure. The procedure allowed us to describe the regularity of bacterial flocs through the quantification of morphological parameters of Euclidean [convexity (Conv) and form factor (FF)] and fractal geometry [surface fractal dimension (D BS)], which are important factors to be considered in the settling efficiency of aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号