首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
KNUDSEN, J. T. & TOLLSTEN, L., Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Floral scent from 15 moth-pollinated species in nine families was collected by head-space adsorption. The chemical composition was determined by coupled gas chromatography-mass spectrometry (GC-MS). The typical floral scent of moth-pollinated flowers contains some acyclic terpene alcohols, their corresponding hydrocarbons, benzenoid alcohols and esters and small amounts of some nitrogen compounds. The floral scent composition of sphingophilous flowers can be distinguished from that of phalaenophilous flowers by the presence of oxygenated sesquiterpenes. The flowers of three of the studied species had the general appearance and floral scent composition of moth-pollinated flowers, but contained no nectar reward. These species probably rely on deceptive pollination by naive visitors, which are deceived by the similarity of the flowers' morphological and scent chemistry to that of rewarding moth flowers. The finding of similar or structurally closely related floral scent compounds in both temperate and tropical species from both the Old and New worlds suggests that floral scent composition has been selected by a specific group of pollinators, moths that have similar sensory preferences. The functions of floral scent in moth-pollinated flowers are discussed in relation to an often observed over-representation of male moth visitors.  相似文献   

2.
We studied an assemblage of 17 species of bird-pollinated Ecuadorian plants (from 14 angiosperm families), including taxa pollinated by short-billed (trochiline) and sickle-billed (hermit) hummingbirds. Hummingbirds are widely supposed to ignore fragrance while visiting flowers. We collected floral headspace odours in order to test the general prediction that specialist hummingbird-pollinated flowers are scentless. In nine out of 17 of these species we failed to detect any odours using gas chromatography-mass spectrometry (GC-MS), whereas the remaining eight species produced trace levels of volatile compounds. Most of these odour compounds were of terpenoid or lipoxygenase derivation and are commonly emitted by vegetative as well as floral plant tissues. Further studies will be required to determine whether these weak odours attract alternative pollinators, repel enemies or represent vestiges of a scented ancestry.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 191–199.  相似文献   

3.

Backgrounds and Aims

A current challenge in coevolutionary biology is to understand how suites of traits vary as coevolving lineages diverge. Floral scent is often a complex, variable trait that attracts a suite of generalized pollinators, but may be highly specific in plants specialized on attracting coevolved pollinating floral parasites. In this study, floral scent variation was investigated in four species of woodland stars (Lithophragma spp.) that share the same major pollinator (the moth Greya politella, a floral parasite). Three specific hypotheses were tested: (1) sharing the same specific major pollinator favours conservation of floral scent among close relatives; (2) selection favours ‘private channels’ of rare compounds particularly aimed at the specialist pollinator; or (3) selection from rare, less-specialized co-pollinators mitigates the conservation of floral scent and occurrence of private channels.

Methods

Dynamic headspace sampling and solid-phase microextraction were applied to greenhouse-grown plants from a common garden as well as to field samples from natural populations in a series of experiments aiming to disentangle the genetic and environmental basis of floral scent variation.

Key Results

Striking floral scent divergence was discovered among species. Only one of 69 compounds was shared among all four species. Scent variation was largely genetically based, because it was consistent across field and greenhouse treatments, and was not affected by visits from the pollinating floral parasite.

Conclusions

The strong divergence in floral scents among Lithophragma species contrasts with the pattern of conserved floral scent composition found in other plant genera involved in mutualisms with pollinating floral parasites. Unlike some of these other obligate pollination mutualisms, Lithophragma plants in some populations are occasionally visited by generalist pollinators from other insect taxa. This additional complexity may contribute to the diversification in floral scent found among the Lithophragma species pollinated by Greya moths.  相似文献   

4.
In geonomoid palms floral scent is both an important pollinator attractant and an important factor in reproductive isolation. However, little is known about intraspecific variation in floral scent composition in these as well as in other plants. In this study the level of variation in floral scent composition found within and among five populations of Geonoma macrostachys var. macrostachys in the western Amazon is documented. Floral scent samples were collected using head-space adsorption and were analyzed by gas chromatography-mass spectrometry. Most of the 108 compounds recorded were of isoprenoid origin, but only 28 of the compounds were found in all 62 samples analyzed. No differentiation was found between the studied populations, confirming that G. macrostachys var. macrostachys is outbreeding and indicating that the individual populations are part of a metapopulation linked by sufficient gene flow to avoid local differentiation. However, a negative correlation between distance and similarity of floral scent chemistry indicates a case of clinal variation within the distribution area of G. macrostachys. Male euglossine bees are infrequent visitors to G. macrostachys, while other groups of insects are abundant. However, the level of variation and the chemical composition lend support to a suggested importance of male euglossine bees in long-distance pollen flow in G. macrostachys. Other insect groups are probably important in securing pollination of most flowers with pollen from nearby sources.  相似文献   

5.
During the past several decades, the pollination biology of Old World plant species pollinated by flying foxes and of New World plants pollinated by highly specialized nectar-feeding glossophagine bats has been studied in detail. However, little is known about Neotropical plants that are pollinated by less specialized phyllostomid bats. Therefore, we studied the pollination biology of Parkia pendula , a tree pollinated by Phyllostomus . Flowers of P. pendula are arranged in capitula, and a capitulum is composed of approximately 800 hermaphrodite flowers and 260 sterile flowers. The sterile flowers produced a total of 7.4 ml nectar per night, with a sugar concentration of 14.95%, and proline as the dominant amino acid. Nectar production is highest at dusk and ends at 03:00 h. The floral scent is dominated by monoterpenoids (97.9%), with ( E )-β-ocimene being the dominant (84.0%) compound. No sulfur compounds were detected. The capitula are heavily visited by four species of phyllostomid bats, of which Phyllostomus discolor is the most abundant (98.9%). Nectar production per capitulum is within the reported range of nectar produced by this pantropical genus (5.0–8.0 ml). This genus-wide range seems to be optimal for attracting non-specialized nectar-feeding bats and forces them to visit capitula of several trees to satisfy their dietary needs, thus increasing the probability of cross-pollination for this plant.  相似文献   

6.
花颜色和花气味的量化研究方法   总被引:3,自引:0,他引:3  
花颜色和花气味是花部构成的重要内容。在已开展的传粉生态学研究中对二者的报道主要是描述性的,而其量化研究可以为揭示传粉机制提供有力的实验证据。本文主要介绍了花颜色的测量和标定方法,包括比色卡、分光色差仪和便携式光谱仪等;花气味的采集方法,包括动态顶空套袋-吸附采集法、吸附-溶剂洗脱法和固相微萃取法等;花气味的检测和分析方法,包括气相色谱-质谱联用仪分析和电子鼻型超速气相色谱仪分析等;以及昆虫行为学实验方法,包括气相色谱-昆虫触角电位联用技术、Y型嗅觉仪和飞行箱实验等。科研人员可以根据实验材料的特点和实验目的选择适合的量化研究方法。  相似文献   

7.
•Background and Aims Animal-pollinated angiosperms have evolved a variety of signalling mechanisms to attract pollinators. Floral scent is a key component of pollinator attraction, and its chemistry modulates both pollinator behaviour and the formation of plant–pollinator networks. The neotropical orchid genus Gongora exhibits specialized pollinator associations with male orchid bees (Euglossini). Male bees visit orchid flowers to collect volatile chemical compounds that they store in hind-leg pouches to use subsequently during courtship display. Hence, Gongora floral scent compounds simultaneously serve as signalling molecules and pollinator rewards. Furthermore, because floral scent acts as the predominant reproductive isolating barrier among lineages, it has been hypothesized that chemical traits are highly species specific. A comparative analysis of intra- and inter-specific variation of floral scent chemistry was conducted to investigate the evolutionary patterns across the genus.•Methods Gas chromatography–mass spectrometry (GC-MS) was used to analyse the floral scent of 78 individuals belonging to 28 different species of Gongora from two of the three major lineages sampled across the neotropical region. Multidimensional scaling and indicator value analyses were implemented to investigate the patterns of chemical diversity within and among taxonomic groups at various geographic scales. Additionally, pollinator observations were conducted on a sympatric community of Gongora orchids exhibiting distinct floral scent phenotypes.•Key Results A total of 83 floral volatiles, mainly terpenes and aromatic compounds, were detected. Many of the identified compounds are common across diverse angiosperm families (e.g. cineole, eugenol, β-ocimene, β-pinene and terpinen-4-ol), while others are relatively rare outside euglossine bee-pollinated orchid lineages. Additionally, 29 volatiles were identified that are known to attract and elicit collection behaviour in male bees. Floral scent traits were less variable within species than between species, and the analysis revealed exceptional levels of cryptic diversity. Gongora species were divided into 15 fragrance groups based on shared compounds. Fragrance groups indicate that floral scent variation is not predicted by taxonomic rank or biogeographic region.•Conclusions Gongora orchids emit a diverse array of scent molecules that are largely species specific, and closely related taxa exhibit qualitatively and quantitatively divergent chemical profiles. It is shown that within a community, Gongora scent chemotypes are correlated with near non-overlapping bee pollinator assemblies. The results lend support to the hypothesis that floral scent traits regulate the architecture of bee pollinator associations. Thus, Gongora provides unique opportunities to examine the interplay between floral traits and pollinator specialization in plant–pollinator mutualisms.  相似文献   

8.
We identified volatiles from the floral headspace of Yucca filamentosa using gas chromatography and mass spectrometry and analyzed floral scent composition and variation among populations pollinated by different yucca moth species. Twenty-one scent compounds were repeatedly identified and most could be categorized into two major classes: (1) homoterpenes derived from the sesquiterpene alcohol nerolidol and (2) long chain aliphatic hydrocarbons. Two biosynthetic pathways are thus responsible for the majority of floral volatiles in Y. filamentosa. The homoterpene E-4,8-dimethylnona-1,3,7-triene, which is released systemically by higher plants upon herbivory, was the most abundant compound. Two di-oxygenated compounds not previously reported as floral compounds also were detected. No differentiation in floral scent was observed between populations pollinated by different yucca moths, nor was there any correlation between chemical distance and geographic distance among populations. The total release rate of volatiles differed significantly among populations, but not between populations with different pollinators. The combination of unique compounds and low variation in the fragrance blend may reflect highly selective attraction of obligate pollinators to flowers. The observed lack of differentiation in floral scent can putatively explain high moth-mediated gene flow among sites, but it does not explain conservation of odor composition across populations with different pollinators.  相似文献   

9.
Floral reproductive morphology and scent are of primary importance to pollinators in guiding foraging decisions. We compared the floral scent and reproductive morphology between two subspecies of Linanthus dichotomus (Polemoniaceae) that are taxonomically distinguished by geography and flowering time: the vespertine L. dichotomus subsp. dichotomus and the diurnal L. dichotomus subsp. meridianus. Disparity in flowering time between the two subspecies is accompanied by differences in flower visitors. We collected floral volatiles using dynamic headspace methods and analyzed them using gas chromatography and mass spectroscopy. Together, the subspecies produced a total of 39 floral scent compounds. Subspecies differ in the quantitative pattern of volatiles that attract noctuid moths (e.g., lilac aldehydes) vs. a more general suite of visitors (e.g., phenylacetaldehyde), but not in overall scent emission rates. A discriminant function analysis correctly distinguished between the two subspecies based on scent samples 86% of the time. We measured seven reproductive morphological traits; a discriminant function analysis distinguished between the two subspecies based on morphological samples 81% of the time. We found significant differences between subspecies in scent but not in individual morphological traits. The evidence presented here is most consistent with a hypothesis of pollinator-mediated selection.  相似文献   

10.
Diversity and distribution of floral scent   总被引:20,自引:0,他引:20  
A list of 1719 chemical compounds identified from headspace samples of floral scent is presented. The list has been compiled from some 270 published papers, including analyses of 991 species of flowering plants and a few gymnosperms, a sample including seed plants from 90 families and 38 orders. The compounds belong to seven major compound classes, of which the aliphatics, the benzenoids and phenylpropanoids, and, among the terpenes, the mono- and sesquiterpenes, occur in most orders of seeds plants. C5-branched compounds, irregular terpenes, nitrogen-containing compounds, and a class of miscellaneous cyclic compounds have been recorded in about two-thirds of the orders. Sulfur-containing compounds occur in a third of the orders, whereas diterpenes have been reported from three orders only. The most common single compounds in floral scent are the monoterpenes limonene, (E)-β-ocimene, myrcene, linalool, α- and β-pinene, and the benzenoids benzaldehyde, methyl 2-hydroxybenzoate (methyl salicylate), benzyl alcohol, and 2-phenyl ethanol, which occur in 54–71% of the families investigated so far. The sesquiterpene caryophyllene and the irregular terpene 6-methyl-5-hepten-2-one are also common and occur in more than 50% of the families. Orchidaceae are by far the best investigated family, followed by several families known to have many species with strongly scented flowers, such as Araceae, Arecaceae, Magnoliaceae, and Rosaceae. However, the majority of angiosperm families are still poorly investigated. Relationships between floral scent and pollination, chemistry, evolution, and phylogeny are briefly discussed. It is concluded that floral scent chemistry is of little use for phylogenetic estimates above the genus level, whereas the distribution and combinations of floral scent compounds at species and subspecific levels is a promising field of investigation for the understanding of adaptations and evolutionary processes in angiosperms.  相似文献   

11.
Floral fragrances are an important component for pollinator attraction in beetle-pollinated flowers. Several genera in the Proteaceae contain beetle-pollinated species. However, there is no information on the floral scent chemistry of beetle-pollinated members of the family. In this paper we report on the spatial variation and differences between developmental stages in emission of inflorescence (flowerhead) volatiles of four South African Protea species (P. caffra, P. dracomontana, P. simplex, and P. welwitschii) that are pollinated by cetoniine beetles. The scents from different inflorescence parts (bracts, perianth, styles, and nectar) and from successive anthesis stages of whole inflorescences were sampled using dynamic headspace collection and identified using GC–MS. Although the four species shared many scent compounds, possibly reflecting their close phylogenetic relationships and common pollinators, they showed significant differences in overall scent composition due to various species-specific compounds, such as the unique tiglate esters found in the scent of P. welwitschii. The strongest emissions and largest number of volatiles, especially monoterpenes, were from inflorescences at full pollen dehiscence. Senescing inflorescences of two species and nectars of all species emitted proportionally high amounts of acetoin (3-hydroxy-2-butanone) and aromatic alcohols, typical fermentation products. As a consequence, the scent composition of nectar was much more similar among species than was the scent composition of other parts of the inflorescence. These results illustrate how the blends of compounds that make up the overall floral scent are a dynamic consequence of emissions from various plant parts.  相似文献   

12.

Background and Aims

Floral scent may play a key role as a selective attractant in plants with specialized pollination systems, particularly in cases where floral morphology does not function as a filter of flower visitors. The pollination systems of two African Eucomis species (E. autumnalis and E. comosa) were investigated and a test was made of the importance of scent and visual cues as floral attractants.

Methods and Key Results

Visitor observations showed that E. autumnalis and E. comosa are visited primarily by pompilid wasps belonging to the genus Hemipepsis. These wasps carry considerably more Eucomis pollen and are more active on flowers than other visiting insects. Furthermore, experiments involving virgin flowers showed that these insects are capable of depositing pollen on the stigmas of E. autumnalis, and, in the case of E. comosa, pollen deposited during a single visit is sufficient to result in seed set. Experimental hand-pollinations showed that both species are genetically self-incompatible and thus reliant on pollinators for seed set. Choice experiments conducted in the field and laboratory with E. autumnalis demonstrated that pompilid wasps are attracted to flowers primarily by scent and not visual cues. Measurement of spectral reflectance by flower petals showed that flowers are cryptically coloured and are similar to the background vegetation. Analysis of headspace scent samples using coupled gas chromatography–mass spectrometry revealed that E. autumnalis and E. comosa scents are dominated by aromatic and monoterpene compounds. One hundred and four volatile compounds were identified in the floral scent of E. autumnalis and 83 in the floral scent of E. comosa, of which 57 were common to the scents of both species.

Conclusions

This study showed that E. autumnalis and E. comosa are specialized for pollination by pompilid wasps in the genus Hemipepsis and achieve specialization through cryptic colouring and the use of scent as a selective floral attractant.Key words: Eucomis, Pompilidae, wasp pollination, breeding system, pollination syndrome, pollinator shift, floral volatile, floral filter  相似文献   

13.
The mechanism of floral scent emission was studied in Petunia axillaris, a plant with a diurnal rhythm of scent output. The emission rate of each volatile compound oscillated in synchrony with its endogenous concentration, so that the intensity of the floral scent appeared to be determined by the endogenous concentrations. The composition of major volatiles in the flower tissue and the flower headspace showed characteristic differences. A negative correlation was found between the boiling points of the volatile compounds and the ratio of their emitted and endogenous concentrations, indicating that the composition of the floral scent depends directly on the endogenous composition of the volatile compounds. We conclude that in P. axillaris, the physiological regulation of floral scent emission operates not in the vaporization process but in the control of the endogenous concentrations of volatiles through biosynthesis and metabolic conversion.  相似文献   

14.
The Philodendron bipinnatifidum complex of Philodendron subgenus Meconostigma may comprise four species, which because of only slight and not very distinct morphological differences are not all unanimously recognized as good species. To find out whether these species are reproductively isolated, we studied the flowering rhythm, thermogenesis and pollination biology of three species of this complex, namely of P. bipinnatifidum, P. aff. bipinnatifidum (provisionally named “P. form selloum”) and P. mello-barretoanum in Brazil. Of the first two mentioned taxa, floral scent was collected and scent compounds were identified by GC–MS. The results showed that the coastal forest species P. bipinnatifidum has a two-, or three-night flowering rhythm, with the pistillate stage in the first night and the staminate stage lasting the second and sometimes also the third night. Strong thermogenesis with extended heating periods of several hours during the first part of the usual two subsequent nights and the maximum temperatures of up to 40 °C absolute heating of the spadices occurred in the pistillate and staminate stages. Concomitant with the heating periods, relatively low amounts of principally (Z)-2-pentenyl acetate and (Z)-jasmone were emitted by both the pistillate and staminate stage inflorescences. The dynastid scarab beetle Cyclocephala variolosa was the only pollinator attracted. The upland forest P. form selloum always had a two-night flowering rhythm with the pistillate stage in the first and the staminate stage in the subsequent night. This world-record holder of thermogenesis can heat up to the remarkable 45 °C during a relatively short period in the evening of the pistillate stage. During the thermogenic period, enormous amounts of principally 4-methoxystyrene and 3,4-dimethoxystyrene were produced and which could attract a large number of female and male individuals of the dynastid scarab beetle Erioscelis emarginata. In the staminate stage of P. form selloum, temperature elevation is significantly lower and the scent compounds are different from the pistillate stage. The cerrado biome species P. mello-barretoanum has a flowering rhythm similar to P. form selloum, reaching a maximum heating of about 40 °C during the pistillate stage. The sole pollinator attracted was Cyclocephala atricapilla. The differences observed and analyzed among the taxa, including the flowering rhythm, thermogenic activities, scent compounds emitted, pollinating dynastid scarab beetles attracted, as well as slight morphological differences and apparent geographical exclusiveness noted in these three taxa are strong indicators that P. bipinnatifidum, P. form selloum and P. mello-barretoanum are different enough to be considered good species. The morphological affinities of these species might be a hint that speciation has been a recent event and/or also that reproductive isolation based on different, non-overlapping distribution areas, different scent compounds and different pollinators was effective enough to need further morphological differentiation.  相似文献   

15.
The subfamilyPhytelephantoideae comprises three genera (Ammandra, Aphandra, andPhytelephas) and seven species of dioecious palms. The floral scents ofAmmandra dasyneura, A. decasperma, Aphandra natalia, Phytelephas aequatorialis, P. macrocarpa, andP. seemannii were analyzed by gas chromatography-mass spectrometry. We studied the pollination biology ofA. natalia, P. aequatorialis, andP. macrocarpa, and tested how the synthetically produced main constituents of the floral scents ofAphandra andPhytelephas attracted insects in two natural populations ofPhytelephas. The genera are distinct in terms of floral scents.Ammandra has sesquiterpenes,Aphandra (+)-2-methoxy-3-sec-butylpyrazine, andPhytelephas p-methyl anisol. These constituents dominated the scents quantitatively and qualitatively. The similarity between scents of male and female inflorescences was 76.5% inAmmandra, 84.2% inAphandra, and >99% inPhytelephas. Different species ofAleocharinae (Staphylinidae) pollinateAphandra natalia andPhytelephas species and reproduce in their male inflorescences.Derelomini (Curculinoidae) andMystrops (Nitidulidae) only visit and pollinatePhytelephas in which male inflorescences they reproduce. A species ofBaridinae (Curculionidae) only visits and pollinatesAphandra natalia, and reproduces in its female inflorescence. The apparent reliance on one or a few floral scent constituents as attractants and few and specific pollinators may indicate co-evolution. Sympatric species ofPhytelephantoideae have different scents. We suggest that species with similar scents have allopatric distributions due to the absence of a pollinator isolation mechanism.  相似文献   

16.
Floral evolution often involves suites of traits, including morphology, colour and scent, but these traits are seldom analysed together in comparative studies. We investigated the associations between floral traits and pollination systems in Schizochilus, a southern African orchid genus with small nectar-producing flowers that has not been studied previously with respect to pollination biology. Field observations indicated the presence of distinct pollination systems in the four species which occur in the Drakensberg, including pollination by muscid flies in Schizochilus angustifolius, tachinid flies in Schizochilus zeyheri, various small flies in Schizochilus bulbinella and bees and wasps in Schizochilus flexuosus. Pollination success and pollen transfer efficiency clearly differed among the four species but were not correlated with the quantity of nectar rewards. Multivariate analysis of floral morphology and floral scent chemistry based on GC-MS data revealed significant differences among species as well as populations within species. The floral scent of S. angustifolius was dominated by the benzenoid compounds benzaldehyde and phenylacetaldehyde. Samples of one population of S. bulbinella were relatively similar to S. angustifolius but samples of another population were very distinct due to the occurrence of the nitrogen-containing compounds 3-methyl-butyl aldoxime (syn/anti) and the higher amounts of aliphatic esters, alcohols and acids. In contrast, the floral scent of S. flexuosus and S. zeyheri was characterized by high relative amounts of methyl benzoate. We conclude that Schizochilus has distinct, specialized pollination systems associated with subtle but significant variation in floral morphology and scent chemistry. We also caution that sampling of several populations may be required to characterize floral scent composition at the species-level in plants.  相似文献   

17.
Summary Individual plants in gynodioecious populations ofPhacelia linearis (Hydrophyllaceae) vary in flower gender, flower size, and flower number. This paper reports the effects of variation in floral display on the visitation behaviour of this species' pollinators (mainly pollen-collecting solitary bees) in several natural and three experimental plant populations, and discusses the results in terms of the consequences for plant fitness. The working hypotheses were: (1) that because female plants do not produce pollen, pollen-collecting insects would visit hermaphrodite plants at a higher rate than female plants and would visit more flowers per hermaphrodite than per female; and (2) that pollinator arrival rate would increase with flower size and flower number, the two main components of visual display. These hypotheses were generally supported, but the effects of floral display on pollinator visitation varied substantially among plant populations. Hermaphrodites received significantly higher rates of pollinator arrivals and significantly higher rates of visits to flowers than did females in all experimental populations. Flower size affected arrival rate and flower visit rate positively in natural populations and in two of the three experimental populations. The flower size effect was significant only among female plants in one experimental population, and only among hermaphrodites in another. The effect of flower number on arrival rate was positive and highly significant in natural populations and in all experimental populations. In two out of three experimental populations, insects visited significantly more flowers per hermaphrodite than per female and visited more flowers on many-flowered plants than on few-flowered plants, but neither effect was detected in the third experimental population. Because seed production is not pollen-limited in this species, variation in pollinator visitation behaviour should mainly affect the male reproductive success of hermaphrodite plants. These findings suggest that pollinator-mediated natural selection for floral display inP. linearis varies in space and time.  相似文献   

18.
Molecular Biology Reports - Rhabosciadium aucheri is an Iranian endemic herbaceous species that grows in the west, center, and south regions of Iran. In the present study, genetic variation of 70...  相似文献   

19.
Plants emit chemically diverse volatile compounds for attracting pollinators or putting up a chemical defense against herbivores. 2-Phenylethanol (2PE) is one of the abundantly emitted scent compounds in rose flowers. Feeding experiments with l-[2H8]phenylalanine into rose flowers and subsequent analysis using gas chromatography–mass spectrometry analysis revealed the hypothetical biosynthetic intermediates to [2H8]-2PE, and the biochemical and genetic analyses elucidated the principal pathway to [2H8]-2PE. We recently found season-specific 2PE pathway producing [2H7]-2PE from l-[2H8]phenylalanine. This is a unique example where the dominant pathway to a specific compound changes with the seasons. This review focuses on the biosynthesis of floral volatiles and their regulation to adapt to the changes in the environment.  相似文献   

20.
1.   A major transition in flowering plants has been the evolution of separate sexes (dioecy) from combined sexes (hermaphroditism). This transition is often, but not always, accompanied by the evolution of sexual dimorphism in attractive traits, and floral scent is no exception.
2.   In this review I aim to improve our understanding of variation in sexual dimorphism in floral scent characteristics by first explicating the relevant hypotheses, and then deriving explicit predictions for the pattern of floral scent from each.
3.   Next, I synthesize and qualitatively review published data on floral volatile emission rate and composition in 33 gender dimorphic species to identify emerging patterns, and evaluate these in light of predictions derived from the hypotheses.
4.   Although conclusions must be viewed as preliminary, a handful of strong patterns were revealed: (1) in the majority of the species studied males emit more volatiles per flower than females, (2) in over half of the species studied the sexes differed in at least one aspect of scent composition, (3) sexual dimorphism in scent composition was less common in species with rewardless females and/or brood site pollination than those that offered nectar and/or pollen, (4) a one-to-one correspondence between sex differences in overall scent composition and male organ-specific scent production is largely not found.
5.   This review has highlighted gaps in our understanding of the genesis of patterns of sexual dimorphism in floral scent, and makes clear that to move the field forward we need to shift our focus from pattern to process, and this will be best achieved by simultaneously testing alternative hypotheses at the same level of analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号