首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We examined the impact of five silver carp biomass levels (0, 8, 16, 20, and 32 g m−3) on plankton communities and water quality of Villerest eutrophic reservoir (France). We realized the experiments using outdoor mesocosms. The presence of silver carp led to changes in zooplankton and phytoplankton assemblages. High fish biomass strongly reduced cladoceran abundance (through predation). Silver carp inefficiently grazed down particles < 20 μm. More importantly, however, the suppression of herbivorous cladocerans resulted in the increase of small size algae which were relieved from grazing and benefit from high nutrient concentrations. In contrast, in mesocosms without fish, the dominance of cladocerans (mainly Daphnia) controlled small size algae and probably also larger size algae (colonial chlorophytes, cyanobacteria). Thus, the Secchi disc transparency increased markedly. Through cascade effects, the modification of grazers communities led to changes in the utilization patterns of the added nutrients by phytoplankton communities. In high fish biomass treatments, nutrients were more efficiently accumulated into particulate fractions compared with no-fish and low-fish biomass treatments that were characterized by higher dissolved nutrients concentrations. Zooplankton was an essential source of food for silver carp. The productivity of zooplankton sustained a moderate silver carp biomass (up to 16 g m−3). In the presence of the highest fish biomass, the productivity of zooplankton was not large enough and silver carps fed on additional phytoplankton. Although mesocosms with high fish biomass were characterized by a slight cyanobacteria development compared with other fish mesocosms, silver carp was not effective in reducing cyanobacteria dominance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
报道了单养链(Hypophthalmichthys molitrix)和施肥对盐碱池塘围隔生态系统浮游生物群落的影响,链的放养使浮游植物丰度,叶绿素a 含量和和初组生产力增大,浮游植物小型化,生物量以小型硅藻和绿藻占优势,裸藻和金藻占有相当比重;浮游动物生物量减少,特别是枝角类的生物量无鱼围隔大于有鱼围隔,且多是较大型的种类,施肥特别是施无机肥能显著地提高浮游植物丰度和初级生产力,浮游动物生物量也增大,施有机肥围隔浮游植物和浮游动物生物量虽高于有鱼对照围隔,但其浮游植物初级生产力,叶绿素a含量,浮游生物多样性指数,P/R系数均较低,链鱼的生长最差,文中讨论了滤食性鱼类和施肥对浮游生物的影响。  相似文献   

3.
SUMMARY 1. Silver carp, Hypophthalmichthys molitrix (Val.), feeds on both phyto- and zooplankton and has been used in lake biomanipulation studies to suppress algal biomass. Because reports on the effects of silver carp on lake food webs have been contradictory, we conducted an enclosure experiment to test how a moderate biomass of the fish (10 g wet weight m−3) affects phytoplankton and crustacean zooplankton in a mesotrophic temperate reservoir.
2. Phytoplankton biomass <30 μm and particulate organic carbon (POC) <30 μm were significantly higher in enclosures with silver carp than in enclosures without fish, whereas Secchi depth was lower. Total copepod biomass declined strongly in both treatments during the experiment, but it was significantly higher in fish-free enclosures. Daphnid biomass was also consistently higher in enclosures without fish, although this effect was not significant. However, the presence of fish led to a fast and significant decrease in the size at maturity of Daphnia galeata Sars. Thus, the moderate biomass of silver carp had a stronger negative effect on cladoceran zooplankton than on phytoplankton.
3. Based on these results and those of previous studies, we conclude that silver carp should be used for biomanipulation only if the primary aim is to reduce nuisance blooms of large phytoplankton species (e.g. cyanobacteria) that cannot be effectively controlled by large herbivorous zooplankton. Therefore, stocking of silver carp appears to be most appropriate in tropical lakes that are highly productive and naturally lack large cladoceran zooplankton.  相似文献   

4.
1. An in situ enclosure experiment was conducted in a deep reservoir of southern China to examine (i) the effects of a low biomass (4 g wet weight m?3) of silver carp (Hypophthalmichthys molitrix) and nutrients on the plankton community and (ii) the response of Daphnia to eutrophication. 2. In the absence of fish, Daphnia galeata dominated the zooplankton community, whereas calanoids were dominant in the fish treatments, followed by D. galeata. Silver carp stocking significantly reduced total zooplankton biomass, and that of D. galeata and Leptodorarichardi, but markedly increased the biomass of smaller cladocerans, copepod nauplii and rotifers. In contrast, nutrient enrichment had no significant effect on the plankton community except for cyclopoids. 3. Chlorophyta, Cryptophyta and Bacillariophyta were dominant phytoplankton groups during the experiment. Chlorophyta with high growth rates (mainly Chlorella vulgaris in the fish enclosures and Ankyra sp. in the fishless enclosures) eventually dominated the phytoplankton community. Total phytoplankton biomass and the biomass of edible phytoplankton [greatest axial linear dimension (GALD) < 30 μm], Chlorophyta, Cryptophyta, Bacillariophyta and Cyanobacteria showed positive responses to fish stocking, while inedible phytoplankton (GALD ≥ 30 μm) was significantly reduced in the fish enclosures. However, there was no significant effect on the plankton community from the interaction of fish and nutrients. 4. Overall, the impact of fish on the plankton community was much greater than that of nutrients. High total phosphorus concentrations in the control treatment and relatively low temperatures may reduce the importance of nutrient enrichment. These results suggest it is not appropriate to use a low biomass of silver carp to control phytoplankton biomass in warmer, eutrophic fresh waters containing large herbivorous cladocerans.  相似文献   

5.
When silver carp were introduced into the Netofa reservoirs at an initial density of 300–4500 fish per hectare in order to control phytoplankton and zooplankton, there was a significant reduction of algae, zooplankton, and suspended organic matter; the silver carp prevents the growth of blue-green algae.Annual yield ranged from 600 to 1500 kg per hectare. The growth of individual fish after 6 to 8 years was 6 to 15 kg per fish.Introducing silver carp to reservoirs as a means of biological control creates a balanced ecological system in which the interspecific competition is minimal and the environmental improvements are considerable.Silver carp and bottom-feeding fish create a positive synergism in the water-body by filtering phytoplankton and zooplankton from the water, excreting a major part of it to the bottom and enriching it with organic matter suitable for zoobenthos.  相似文献   

6.
7.
1. We conducted enclosure experiments in a shallow eutrophic lake, in which a biomass gradient of the filter-feeding planktivore, silver carp, Hypophthalmichthys molitrix Valenciennes, was created, and subsequent community changes in both zooplankton and phytoplankton were examined.
2. During a summer experiment, a bloom of Anabaena flos-aquae developed (≈ 8000 cells mL−1) solely in an enclosure without silver carp. Concurrent with, or slightly preceding the Anabaena bloom, the number of rotifer species and their abundance increased from seven to twelve species (1700–14 400 organisms L−1) after the bloom in this fish-free enclosure. Protozoans and bacteria were generally insensitive to the gradient of silver carp biomass.
3. During an autumn experiment, on the other hand, large herbivorous crustaceans were more efficient than silver carp in suppressing the algae, partly because the lower water temperature (≈ 24 °C) inhibited active feeding of this warm-water fish and also formation of algal colonies. Heterotrophic nanoflagellate and bacterial densities were also influenced negatively by the crustaceans.
4. Correspondence analysis (CA) was applied to the weekly community data of zooplankton and phytoplankton. A major effect detected in the zooplankton community was the presence/absence of silver carp rather than the biomass of silver carp, whereas that in the phytoplankton community was the fish biomass before the Anabaena bloom, but shifted to the presence/absence of the fish after the bloom.  相似文献   

8.
An enclosure experiment was carried out to test trophic cascade effect of filter-feeding fish on the ecosystem: growth of crustacean zooplankton, and possible mechanism of changes of crustacean community structure. Four fish biomass levels were set as follows: 0, 116, 176 and 316 g m-2, and lake water (containing ca. 190 g m-2 of filter-feeding fishes) was comparatively monitored. Nutrient levels were high in all treatments during the experiment. Lowest algal biomass were measured in fishless treatment. Algal biomass decreased during days 21–56 as a function of fish biomass in treatments of low (LF), medium (MF) and high (HF) fish biomass. Crustaceans biomass decreased with increasing fish biomass. Small-bodied cladocerans, Moina micrura, Diaphanosoma brachyurum and Scapholeberis kingii survived when fish biomass was high whilst, large-bodied cladocerans Daphnia spp. and the cyclopoids Theromcyclops taihokuensis, T. brevifuratus, Mescyclops notius and Cyclops vicinus were abundant only in NF enclosures. Evasive calanoid Sinodiaptomus sarsi was significantly enhanced in LF, but decreased significantly with further increase of fish biomass. Demographic data indicated that M. micrura was well developed in all treatments. Our study indicates that algal biomass might be controlled by silver carp biomass in eutrophic environment. Changes of crustacean community are probably affected by the age of the first generation of species. Species with short generation time were dominant and species with long generation time survived less with high fish biomass. Evasive calanoids hardly developed in treatments with high fish biomass because of the (bottle neck) effect of nauplii. Species abundance were positively related to fish predation avoidance. Other than direct predation, zooplankton might also be suppressed by filter-feeding fish via competition.  相似文献   

9.
Food of sterile triploid bighead carp, Hypophthalmichthys nobilis , was examined in ponds receiving water from a hypereutrophic take in Florida. No distinctive seasonal changes in food composition were found. The fish fed selectively on Botryococcus braunii Kuetzing, a large nuisance algal species, which constituted 61% of the volume and 50% of the dry weight of the food. Zooplankton was highly selected, but constituted only 3% of the food volume because of the low zooplankton density in the ponds. The remaining proportion of food consisted mainly of blue-green algae. Final fish biomass was low, ranging from 60 to 97 kg ha−1 in individual ponds. Low biomass was due to slow fish growth and high fish mortality. Despite low biomass, the fish lowered the ratio of blue-green/green algae in the ponds and tended to lower phyto- and zooplankton abundance.  相似文献   

10.
罗非鱼对盐碱池塘围隔浮游生物群落的影响   总被引:8,自引:0,他引:8  
本文报道了单养尼罗罗非鱼 (Orecohromisniloticus)对施肥处理下盐碱池塘围隔生态系统浮游生物群落的影响。结果表明 ,罗非鱼的放养使浮游植物丰度、叶绿素a含量和初级生产力增大 ,浮游植物小型化 ,生物量以小型硅藻和绿藻占优势 ,裸藻占有相当比重 ;浮游动物生物量也增大 ,桡足类占优势 ,枝角类小型化 ,原生动物密度增大。施肥特别是施有机肥能显著地提高浮游植物生物量 ,使透明度降低 ,但施无机肥对初级生产力和浮游动物生物量影响不大。施有机肥围隔浮游植物和浮游动物密度、浮游动物生物量和浮游生物多样性指数高于其他有鱼围隔 ,罗非鱼的生长最好。文后讨论了罗非鱼滤食和施肥对浮游生物群落结构的影响 ,并与鲢鱼的实验结果 (赵文 ,1999)进行了比较  相似文献   

11.
清河水库鲢、鳙鱼种群动态研究Ⅰ.生产量的估计   总被引:1,自引:0,他引:1  
本文根据Robson-Chapman公式估算了清河水库鲢、鳙可捕群体的残存率,计算了非捕捞群体的残存率和种群生产量。清河水库非捕捞群体平均年残存率约为0.25,可捕群体的平均年残存率鲢为0.32、鳙为0.38。鲢、鳙鱼种群生产量分别为141和110kg/ha,种群年P/B系数分别为1.15和1.09。鲢、鳙鱼获量仅为其生产量的33%和34%,库存生物量的36%。  相似文献   

12.
In contrast to the relatively well documented impact of particulate-feedingfish on zooplankton communities, little attention has been devotedto the impact of filter-feeding fish. Filter-feeding silverand bighead carp are the most intensively cultured fish speciesin Asia and comprise much of the production of Chinese aquaculture.However, little information is known about the impact of eitherfish on the zooplankton community. Long-term changes in theCopepoda community (1957–1996) were studied at two samplingstations of a subtropical Chinese lake (Lake Donghu) dominatedby silver and bighead carp. For both calanoids and cyclopoids,the littoral station (I) was much more resource profitable thanthe pelagic station (II). There has been a tremendous increasein the annual fish catch over the past 30 years due to the increasedstocking with fingerlings of the two carp species. There wasa notably higher fish density at Station I than at Station II.Cyclopoid abundance was notably higher at Station I than atStation II during the 1950s to the 1980s, while the reversebecame true in the 1990s. This is probably because when fishabundance increased to an extremely high level, the impact offish predation on the cyclopoids became more important thanthat of food resources at the littoral station. At both stations,cyclopoid abundance was relatively low in spite of the presenceof abundant prey. Similarly, calanoid density did not differsignificantly between the two stations in the 1950s and 1960s,but was significantly lower at Station I than at Station IIduring the 1980s and 1990s. Such changes are attributed to thegradient of fish predation between the stations and an increasingpredation pressure by the fish. The increased fish predationalso correlated with a shift in summer-dominant calanoids fromlarger species to smaller ones. In conclusion, the predaceouscyclopoids are affected by fish predation to a much lesser extentthan the herbivorous calanoids, and therefore increased predationby filter-feeding fish results in a definite increase in thecyclopoid/calanoid ratio. Predation by filter-feeding fish hasbeen a driving force in shaping the copepod community structureof Lake Donghu during the past decades.  相似文献   

13.
Two full-length cDNAs encoding glutathione S-transferase (GST) were cloned and sequenced from the hepatopancreas of planktivorous silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis). The silver carp and bighead carp GST cDNA were 920 and 978 bp in length, respectively, and both contained an open reading frame that encoding 223 amino acids. Partial GST cDNA sequences were also obtained from the liver of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius auratu), mud carp (Cirrhinus molitorella), and tilapia (Oreochromis nilotica). All these GSTs could be classified as alpha-class GSTs on the basis of their amino acid sequence identity with other species. The three-dimensional structure of the silver carp GST was predicted using a computer program, and was found to fit the classical two-domain GST structure. Using the genome walker method, a 875-bp 5'-flanking region of the silver carp GST gene was obtained, and several lipopolysaccharide (LPS) response elements were identified in the promoter region of the phytoplanktivorous fish GST gene, indicating that the GST gene expression of this fish might be regulated by LPS, released from the toxic blue-green algae producing microcystins. To compare the constitutive expression level of the liver GST gene among the six freshwater fishes with completely different tolerance to microcystins, beta-actin was used as control and the ratio GST/beta-actin mRNA (%) was determined as 130.7 +/- 6.6 (grass carp), 103.1 +/- 8.9 (bighead carp), 92.6 +/- 15.0 (crucian carp), 72.3 +/- 7.8 (mud carp), 58.8 +/- 11.5 (silver carp), and 33.6 +/- 13.7 (tilapia). The constitutive expression level of the liver GST gene clearly shows that all the six freshwater fishes had a negative relationship with their tolerance to microcystins: high-resistant fishes (phytoplanktivorous silver carp and tilapia) had the lowest tolerance to microcystins and the high-sensitive fish (herbivorous grass carp) had the highest tolerance to microcystins. Taken together with the reciprocal relationship of constitutive and inducible liver GST expression level in some of the tested fish species to microcystin exposure, a molecular mechanism for different microcystin detoxification abilities of the warm freshwater fishes was discussed.  相似文献   

14.
鲤鱼种和鲢鳙对池塘浮游生物的影响   总被引:9,自引:0,他引:9  
赵玉宝 《生态学报》1993,13(4):348-355
本文根据1990年-9月对9个鱼池的研究,报道鲤鱼种和鲢鳙对浮游生物的影响,结果表明:鲤鱼种使浮游植物和浮游动物生物量增加,浮游植物大型化,浮游动物小型化,并使浮游植物多样性增加,浮游动物多样性下降;鲢鳙密度增加,浮生物小型明显,微型藻类和超微在在浮植物中所占比重显著增加,小型浮游动物(原生动物和轮虫)在浮游动物中比重也明显增;鲢鳙密度对浮游生物多样性和浮游生物量的影响具有阶段性,当鲢鳙密度低时,  相似文献   

15.
Zooplankton appeared to be the major contributor to the diet of 1+ silver carp, whereas 3+ fishes exhibited a more evenly balanced spectrum between zooplankton and phytoplankton. The fatty acids profiles of digesta were influenced by zooplankton, particularly for 1+ silver carp. Together, fatty acid profiles of tank zooplankton and digesta were characterized by high proportion of 20 : 5ω3 and 20 : 6ω3. The fatty acids composition of the phytoplankton reflected the dominance of cyanobacteria and chlorophycea, with high quantities of 18 : 2ω6 and 18 : 3ω3. Although cyanobacteria accounted for >70% of the phytoplankton biomass ingested by the carp, fatty acids profiles of digesta were not influenced by phytoplankton fatty acids composition. The low digestive and conversion efficiency of Microcystis aeruginosa explain this absence of relation. The neutral lipids in silver carp tissues reflected poorly the fatty acids profiles in the diet, the semi-natural conditions and the diet dominated throughout the study by zooplankton, led to little variation in tissues fatty acids. The phospholipids in the muscle, liver and peri-intestinal fat were characterized by a rather low proportion of polyunsaturated fatty acids (PUFA) in both 1+ and 3+ fish. From a qualitative view point, cryptophycea, diatoms, and especially zooplankton are much more valuable food for the silver carp than cyanobacteria and desmid chlorophycea which are poor in long-chain PUFA.  相似文献   

16.
Top-down control of prey assemblages by fish predation has been clearly demonstrated for zooplankton and macroinvertebrates. However, in the benthic communities of freshwater ecosystems, the impact of fish predation on meiofaunal assemblages is nearly unknown. In this study, the predation effects of juvenile carp (Cyprinus carpio) and gudgeon (Gobio gobio) on meiofaunal abundance, biomass, community structure, and the diversity of nematodes were examined using microcosms that were sampled repeatedly over 64 days. Significant differences in abundance and biomass were found between the two fish treatments (carp and gudgeon) and their respective controls for nematodes, oligochaetes, and crustaceans (copepods, harpacticoids, ostracods, and cladocerans), but not for rotifers. These changes were consistent with top-down control of the freshwater meiofaunal assemblages in the microcosms over time. By contrast, small-bodied meiofauna was more abundant, suggesting indirect facilitation. Neither the species richness nor the diversity of the nematode community was affected by fish predation. The results indicate that predation by juvenile freshwater fish depresses the overall abundance and biomass of meiofaunal assemblages, except for rotifers, and alters the size structure of the meiofaunal community. Therefore, the meiofaunal assemblages of freshwater ecosystems may be influenced by bottom-feeding juvenile fish, e.g., carp and gudgeon, through top-down control of meiofaunal populations.  相似文献   

17.
Williams  Adrian E.  Moss  Brian 《Hydrobiologia》2003,491(1-3):331-346
Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha–1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.  相似文献   

18.
太湖梅梁湾大型控藻围栏对浮游甲壳动物群落结构的影响   总被引:1,自引:0,他引:1  
2005年对太湖梅梁湾大型鲢、鳙控藻围栏内外浮游甲壳动物群落结构的季节变化进行了监测.结果表明:围栏内外的环境因子、浮游植物生物量、浮游甲壳动物种类组成无显著差异.但鲢、鳙放养对浮游甲壳动物的生物量产生了较大的影响,围栏内浮游甲壳动物的总生物量和枝角类的生物量显著低于围栏外.总体上,枝角类各种类的生物量受鲢、鳙放养的影响程度大于桡足类的种类.太湖梅梁湾浮游甲壳动物的季节演替明显,大部分种类只是季节性出现.冬季和春季以溞(Daphnia sp.)和近邻剑水蚤(Cyclops vicnus)等大型种类为主,夏季和秋季以象鼻溞(Bosmina sp.)、角突网纹溞(Ceriodaphnia cornuta)和中华窄腹剑水蚤(Limnoithona sinensis)等小型种类为主.典范对应分析表明,透明度、温度和浮游植物的生物量是影响浮游甲壳动物季节变化的主要因素.  相似文献   

19.
Silver carp and bighead carp exhibited size-selection for food particles in aquarium experiments, but did not select their preferred species of plankton actively when they were distributed evenly in the water. They also possessed the capacity of selection for feeding area. The removal rates (% g−1 fish weight) of silver carp for smaller plankton (phytoplankton) were higher than those of bighead carp. The removal rates by the latter for bigger plankton (zooplankton) were higher than those of silver carp, but for plankton about 70 μm dia. the rates by the two species were almost equal.  相似文献   

20.
Specific application of determination analysis to investigate the contingencies of various components of natural biocenosis was illustrated by the example of fish production and biomass of phyto- and zooplankton. Determination analysis confirms the theoretic assumptions on food preferences of herbivorous fish: both silver and bighead carps avoided feeding on cyanobacteria. Being a facultative phytoplankton feeder, silver carp preferred microalgae to zooplankton. Determination analysis allowed us to demonstrate the contingencies of the mean biomass of phyto- and zooplankton during both the whole fish production cycle and its individual periods.__________Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 3, 2005, pp. 327–335.Original Russian Text Copyright © 2005 by Bulgakov, Maximov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号