首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
Positioning of mRNA on the 80S ribosome upstream the E site bound codon was studied using derivatives of nona- and dodecaribonucleotides containing the triplet UUU coding for Phe at the 3'-terminus, and a perfluorophenylazide cross-linker on either the first or the third nucleotide. Two sets of the mRNA analogues were used, with the photoactivatable groups on either the C5 atom of the uridine or the N7 atom of the guanosine. The modified nucleotides were directed to positions from -4 to -9 with respect to the first nucleotide of the P site bound codon by tRNA(Phe) cognate to the triplet UUU targeted to the P site. Mild UV-irradiation of ribosomecomplexes with tRNA(Phe) and mRNA analogues resulted in the cross-linking to the 40S subunits preferentially, mainly to the proteins. The principal target for the cross-linking was protein S26 in all cases. Location of the photoactivatable group on the nucleotide at position -4 lead also to the minor cross-linking to protein S3, and at position -6 to protein S14. In the absence of tRNA, all mRNA analogues cross-linked to protein S3.  相似文献   

2.
The arrangement of the template sequence 3′ of the A-site codon on the 80S ribosome was studied using mRNA analogs containing Phe codon UUU at the 5′ end and a photoreactive perfluoroarylazido group linked to C5 of U or N7 of G. The analogs were positioned on the ribosome with the use of tRNAPhe, which directed the UUU codon to the P site, bringing a modified nucleotide to position +9 or +12 relative to the first nucleotide of the P-site codon. Upon mild UV irradiation of ribosome complexes, the analogs of both types crosslinked to the 18S rRNA and proteins of the 40S subunit. Comparisons were made with the crosslinking patterns of complexes in which an mRNA analog contained a modified nucleotide in position +7 (the crosslinking to 18S rRNA in such complexes has been studied previously). The efficiency of crosslinking to ribosomal components depended on the nature of the modified nucleotide of an mRNA analog and its position on the ribosome. The extent of crosslinking to the 18S rRNA drastically decreased as the modified nucleotide was transferred from position +7 to position +12. The 18S rRNA nucleotides involved in crosslinking were identified. A modified nucleotide in position +9 crosslinked to the invariant dinucleotide A1824/A1825 and variable A1823 in the 3′ minidomain of the 18S rRNA and to S15. The same ribosomal components have earlier been shown to crosslink to modified nucleotides in positions +4 to +7. In addition, all mRNA analogs crosslinked to invariant C1698 in the 3′ minidomain and to conserved region 605–620, which closes helix 18 in the 5′ domain.  相似文献   

3.
The 18S rRNA environment of the mRNA at the decoding site of human 80S ribosomes has been studied by cross-linking with derivatives of hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group either at the N7 atom of the guanine or at the C5 atom of the 5'-terminal uracil residue. The location of the codons on the ribosome at A, P, or E sites has been adjusted by the cognate tRNAs. Three types of complexes have been obtained for each type derivative, namely, (1) codon UUU and Phe-tRNAPhe at the P site (codon GUU at the A site), (2) codon UUU and tRNAPhe at the P site and PheVal-tRNAVal at the A site, and (3) codon GUU and Val-tRNAVal at the P site (codon UUU at the E site). This allowed the placement of modified nucleotides of the mRNA analog at positions -3, +1, or +4 on the ribosome. Mild UV irradiation resulted in tRNA-dependent crosslinking of the mRNA analogs to the 18S rRNA. Nucleotide G961 crosslinked to mRNA position -3, nucleotide G1207 to position +1, and A1823 together with A1824 to position +4. All of these nucleotides are located in the most strongly conserved regions of the small subunit RNA structure, and correspond to nucleotides G693, G926, G1491, and A1492 of bacterial 16S rRNA. Three of them (with the exception of G1491) had been found earlier at the 70S ribosomal decoding site. The similarities and differences between the 16S and 18S rRNA decoding sites are discussed.  相似文献   

4.
Protein S15 is a characteristic component of the mammalian 80S ribosome that neighbors mRNA codon at the decoding site and the downstream triplets. In this study we determined S15 protein fragments located close to mRNA positions +4 to +12 with respect to the first nucleotide of the P site codon on the human ribosome. For cross-linking to ribosomal protein S15, a set of mRNA was used that contained triplet UUU/UUC at the 5'-termini and a perfluorophenyl azide-modified uridine in position 3' of this triplet. The locations of mRNA analogues on the ribosome were governed by tRNAPhe cognate to the UUU/UUC triplet targeted to the P site. Cross-linked S15 protein was isolated from the irradiated with mild UV light complexes of 80S ribosomes with tRNAPhe and mRNA analogues with subsequent cleavage with CNBr that splits polypeptide chain after methionines. Analysis of modified oligopeptides resulted from the cleavage revealed that in all cases cross-linking site was located in C-terminal fragment 111-145 of protein S15 indicating that this fragment is involved in formation of decoding site of the eukaryotic ribosome.  相似文献   

5.
Positioning of stop codon and the adjacent triplet downstream of it with respect to the components of human 80S termination complex was studied with the use of mRNA analogues that bore stop signal UPuPuPu (Pu is A or G) and photoactivatable perfluoroaryl azide group. This group was attached to one of nucleotides of the stop signal or 3' of it (in positions +4 to +9 with respect to the first nucleotide of the P site codon). It was shown that upon mild UV irradiation the mRNA analogues crosslinked to components of model complexes imitating state of 80S ribosome in the course of translation termination. It was found that termination factors eRF1 and eRF3 do not affect mutual arrangement of stop signal and the 18S rRNA. Factor eRF1 was shown to cross-link to modified nucleotides in positions +5 to +9 (ability of eRF1 to cross-link to stop codon nucleotide in position +4 was shown earlier). Fragments of eRF1 containing cross-linking sites of the mRNA analogues were determined. In fragment 52-195 (containing the N-domain and a part of the M-domain) we have found cross-linking sites of the analogues that bore modifying groups on A or G in positions +5 to +9 or at the terminal phosphate of nucleotide in position +7. For mRNA analogues bearing modifying groups on G site of cross-linking from positions +5 to +7 was found in the eRF1 fragment  相似文献   

6.
The 18S rRNA nucleotides close to the 80S ribosome template nucleotide adjacent to the A-site codon on the 3-end (i.e., the nucleotide in position +7 relative to the first nucleotide of the P-site codon) were identified using template-controlled chemical affinity ligation. For this purpose, used the photoreactive mRNA analogues with a perfluorophenylazido group attached through various linkers to the uridine C5,3'-terminal phosphate, or guanosine N7 were used. The position of the mRNA analogues on the ribosome was preset using tRNAPhe, which recognized the phenylalanine codon directed to the P-site. An analysis of the rRNAs isolated from the irradiated complexes of 80S ribosomes showed that all the analogues are almost equally ligated to the 18S rRNA nucleotides we attributed to the A-site codon environment: namely, to nucleotides A1823, A1824, and A1825 of the 3'-minidomain and to the 620-630 fragment of the 18S rRNA 5'-domain. In addition, we identified a new component of the mRNA binding site of human ribosomes, nucleotide C1698 belonging to the 18S rRNA 3-minidomain, using analogues bearing a perfluorophenylazido group on uridine and guanine residues. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

7.
The protein environment of mRNA 3' of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5'-end and a perfluoroarylazide group at one of the nucleotide residues at the 3'-end of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in triple complexes and in the absence of tRNA. Within triple complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed, it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3' of the codon in the decoding site.  相似文献   

8.
Positioning of each nucleotide of the E site and the P site bound codons with respect to the 18S rRNA on the human ribosome was studied by cross-linking with mRNA analogs, derivatives of the hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group on the second or the third uracil, and a derivative of the dodecaribonucleotide UUAGUAUUUAUU with a similar group on the guanine residue. The location of the modified nucleotides at any mRNA position from -3 to +3 (position +1 corresponds to the 5' nucleotide of the P site bound codon) was adjusted by the cognate tRNAs. A modified uridine at positions from -1 to +3 cross-linked to nucleotide G1207 of the 18S rRNA, and to nucleotide G961 when it was in position -2. A modified guanosine cross-linked to nucleotide G1207 if it was in position -3 of the mRNA. These data indicate that nucleotide G961 of the 18S rRNA is close only to mRNA positions -3 and -2, while G1207 is in the vicinity of positions from -3 to +3. The latter suggests that there is a sharp turn between the P and E site bound codons that brings nucleotide G1207 of the 18S rRNA close to each nucleotide of these codons. This correlates well with X-ray crystallographic data on bacterial ribosomes, indicating existence of a sharp turn between the P site and E site bound codons near a conserved nucleotide G926 of the 16S rRNA (corresponding to G1207 in 18S rRNA) close to helix 23b containing the conserved nucleotide 693 of the 16S rRNA (corresponding exactly to G961 of the 18S rRNA).  相似文献   

9.
The protein environment of mRNA 3′ of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5′-end and a perfluoroarylazide group at one of the nucleotide residues 3′ of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in ternary complexes and in the absence of tRNA. Within ternary complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed; it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3′ of the codon in the decoding site.  相似文献   

10.
The protein environment of each nucleotide of the template codon located in the A site of the human ribosome was studied with UUCUCAA and UUUGUU derivatives containing a Phe codon (UUC and UUU, respectively) and a perfluoroarylazido group at U4, U5, or U6. The analogs were positioned in the ribosome with the use of tRNA(Phe), which is cognate to the UUC or UUU codon and directs it to the P site, bringing a modified codon in the A site with a modified nucleotide occupying position +4, +5, or +6 relative to the first nucleotide of the P-site codon. On irradiation of ribosome complexes with tRNA(Phe) and mRNA analogs with mild UV light, the analogs crosslinked predominantly to the 40S subunit, modifying the proteins to a greater extent than the rRNA. The 18S rRNA nucleotides crosslinking to the analogs were identified previously. Of the small-subunit proteins, S3 and S15 were the major targets of modification in all cases. The former was modified both in ternary complexes and in the absence of tRNA, and the latter, only in ternary complexes. The extent of crosslinking of mRNA analogs to S15 decreased when the modified nucleotide was shifted from position +4 to position +6. The results were collated with the data on ribosomal proteins located at the decoding site of the 70S ribosome, and conclusion was made that the protein environment of the A-site codon strikingly differs between bacterial and eukaryotic ribosomes.  相似文献   

11.
The protein environment of each nucleotide of the template codon located in the A site of the human ribosome was studied with UUCUCAA and UUUGUU derivatives containing a Phe codon (UUC and UUU, respectively) and a perfluoroarylazido group at U4, U5, or U6. The analogs were positioned in the ribosome with the use of tRNAPhe, which is cognate to the UUC or UUU codon and directs it to the P site, bringing a modified codon in the A site with a modified nucleotide occupying position +4, +5, or +6 relative to the first nucleotide of the P-site codon. On irradiation of ribosome complexes with tRNAPhe and mRNA analogs with mild UV light, the analogs crosslinked predominantly to the 40S subunit, modifying the proteins to a greater extent than the rRNA. The 18S rRNA nucleotides crosslinking to the analogs were identified previously. Of the small-subunit proteins, S3 and S15 were the major targets of modification in all cases. The former was modified both in ternary complexes and in the absence of tRNA, and the latter, only in ternary complexes. The extent of crosslinking of mRNA analogs to S15 decreased when the modified nucleotide was shifted from position +4 to position +6. The results were collated with the data on ribosomal proteins located at the decoding site of the 70S ribosome, and conclusion was made that the protein environment of the A-site codon strikingly differs between bacterial and eukaryotic ribosomes.  相似文献   

12.
mRNA analogues containing 4-thiouridine residues at selected sites were used to extend our analysis of photo-induced cross-links between mRNA and 16S RNA to cover the entire downstream range between positions +1 and +16 on the mRNA (position +1 is the 5'-base of the P-site codon). No tRNA-dependent cross-links were observed from positions +1, +2, +3 or +5. Position +4 on the mRNA was cross-linked in a tRNA-dependent manner to 16S RNA at a site between nucleotides ca 1402-1415 (most probably to the modified residue 1402), and this was absolutely specific for the +4 position. Similarly, the previously observed cross-link to nucleotide 1052 was absolutely specific for the +6 position. The previously observed cross-links from +7 to nucleotide 1395 and from +11 to 532 were however seen to a lesser extent with certain types of mRNA sequence from neighbouring positions (+6 to +10, and +10 to +13, respectively); no tRNA-dependent cross-links to other sites on 16S RNA were found from these positions, and no cross-linking was seen from positions +14 to +16. In each case the effect of a second cognate tRNA (at the ribosomal A-site) on the level of cross-linking was studied, and the specificity of each cross-link was confirmed by translocation experiments with elongation factor G, using appropriate mRNA analogues.  相似文献   

13.
This study is centred upon an important biological problem concerning the structural organization of mammalian ribosomes that cannot be studied by X-ray analysis because 80S ribosome crystals are still unavailable. Here, positioning of the mRNA on 80S ribosomes was studied using mRNA analogues containing the perfluorophenylazide cross-linker on either the guanosine or an uridine residue. The modi-fied nucleotides were directed to positions from −9 to +6 with respect to the first nucleotide of the P site bound codon by a tRNA cognate to the triplet targeted to the P site. Upon mild UV-irradiation, the modified nucleotides at positions +4 to +6 cross-linked to protein S15 and 18S rRNA nucleotides A1823–A1825. In addition, modified guanosines in positions +5 and +6 also cross-linked to G626, and in position +1 to G1702. Cross-linking from the upstream positions was mainly to protein S26 that has no prokaryotic homologues. These findings indicate that the tail of mammalian S15 comes closer to the decoding site than that of its prokaryotic homologue S19, and that the environments of the upstream part of mRNA on 80S and 70S ribosomes differ. On the other hand, the results confirm the widely accepted idea regarding the conserved nature of the decoding site of the small subunit rRNA.  相似文献   

14.
Protein S15 is a characteristic component of the mammalian 80S ribosome that neighbors the mRNA codon at the decoding site and the downstream triplets. The S15 fragment juxtaposed in the human ribosome to mRNA nucleotides +4 to +12 relative to the first nucleotide of the P-site codon was determined. S15 was modified using a set of mRNA analogs containing the triplet UUU/UUC at the 5′ end and a perfluorophenyl azide-carrying uridine at various positions downstream of this triplet. The mRNA analogs were positioned on the ribosome with the use of tRNAPhe, cognate to the UUU/UUC triplet, targeted to the P site. Modified S15 was isolated from complexes of 80S ribosomes with tRNAPhe and the mRNA analogs after irradiation with mild UV light and hydrolyzed with cyanogen bromide, cleaving the polypeptide chain after Met residues. Analysis of the modified oligopeptides resulting from hydrolysis demonstrated that the crosslinking site was in C-terminal fragment 111–145 of S15 in all cases, suggesting the involvement of this fragment in the decoding site of the eukaryotic ribosome.  相似文献   

15.
Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site bound codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5′-termini that could predetermine the position of the tRNAPhe on the ribosome by the P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3′ of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide—induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2–217) and/or in the C-terminal fragment 190–236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1.  相似文献   

16.
The 18S rRNA nucleotides close to the template nucleotide adjacent to the 80S ribosomal A-site codon on the 3′-end (i.e., the nucleotide in position +7 relative to the first nucleotide of the P-site codon) were identified using the affinity crosslinking approach. For this purpose, the photoreactive mRNA analogues with a perfluorophenylazide group attached through various linkers to the uridine C5, 3′-terminal phosphate or guanosine N7 were used. The position of the mRNA analogues on the ribosome was preset using tRNAPhe, which recognized the phenylalanine codon directed to the P-site. An analysis of the rRNAs isolated from the irradiated complexes of 80S ribosomes showed that all the analogues are almost equally crosslinked to the 18S rRNA nucleotides we attributed to the A-site codon environment: namely, to nucleotides A1823, A1824, and A1825 of the 3′-minidomain and to the 620–630 fragment of the 18S rRNA 5′-domain. In addition, we identified a new component of the mRNA binding site of human ribosomes, nucleotide C1698, belonging to the 18S rRNA 3′-minidomain, using analogues bearing a perfluorophenylazide group on uridine and guanine residues.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 295–302.Original Russian Text Copyright © 2005 by Demeshkina, Styazhkina, Bulygin, Repkova, Ven’yaminova, Karpova.  相似文献   

17.
Three mRNA analogs--derivatives of hexaribonucleotide pUUUGUU comprising phenylalanine and valine codons with a perfluoroarylazido group attached to the C5 atom of the uridine residue at the first, second, or third position--were used for photocrosslinking with 80S ribosomes from human placenta. The mRNA analogs were positioned on the ribosome with tRNA recognizing these codons: UUU was at the P site if tRNA(Phe) was used, while tRNA(Val) was used to put there the GUU codon (UUU at the E site). Thus, the crosslinking group of mRNA analog might occupy positions -3 to +3 with respect to the first nucleotide of the codon at the P site. Irradiation of the complexes with soft UV light (lambda > 280 nm) resulted in the crosslinking of pUUUGUU derivatives with 18S RNA and proteins in the ribosome small subunit. The crosslinking with rRNA was observed only in the presence of tRNA. The photoactivatable group in positions -1 to +3 binds to G1207, while that in positions -2 or -3 binds to G961 of 18S RNA. In all cases, we observed crosslinking with S2 and S3 proteins irrespective of the presence of tRNA in the complex. Crosslinking with S23 and S26 proteins was observed mainly in the presence of tRNA when modified nucleotide occupied the +1 position (for both proteins) or the -3 position (for S26 protein). The crosslinking with S5/S7 proteins was substantial when modified nucleotide was in the -3 position, this crosslinking was not observed in the absence of tRNA.  相似文献   

18.
The eukaryotic ribosomal protein S15 is a key component of the decoding site in contrast to its prokaryotic counterpart, S19p, which is located away from the mRNA binding track on the ribosome. Here, we determined the oligopeptide of S15 neighboring the A site mRNA codon on the human 80S ribosome with the use of mRNA analogues bearing perfluorophenyl azide-modified nucleotides in the sense or stop codon targeted to the 80S ribosomal A site. The protein was cross-linked to mRNA analogues in specific ribosomal complexes that were obtained in the presence of eRF1 in the experiments with mRNAs bearing stop codon. Digestion of modified S15 with various specific proteolytic agents followed by identification of the resulting modified oligopeptides showed that cross-link was in C-terminal fragment in positions 131–145, most probably, in decapeptide 131-PGIGATHSSR-140. The position of cross-linking site on the S15 protein did not depend on the nature of the A site-bound codon (sense or stop codon) and on the presence of polypeptide chain release factor eRF1 in the ribosomal complexes with mRNA analogues bearing a stop codon. The results indicate an involvement of the mentioned decapeptide in the formation of the ribosomal decoding site during elongation and termination of translation. Alignment of amino acid sequences of eukaryotic S15 and its prokaryotic counterpart, S19p from eubacteria and archaea, revealed that decapeptide PGIGATHSSR in positions 131–140 is strongly conserved in eukaryotes and has minor variations in archaea but has no homology with any sequence in C-terminal part of eubacterial S19p, which suggests involvement of the decapeptide in the translation process in a eukaryote-specific manner.  相似文献   

19.
Three mRNA analogs—derivatives of hexaribonucleotide pUUUGUU comprising phenylalanine and valine codons with a perfluoroarylazido group attached to the C5 atom of the uridine residue at the first, second, or third position—were used for photocrosslinking with 80S ribosomes from human placenta. The mRNA analogs were positioned on the ribosome with tRNA recognizing these codons: UUU was at the P site if tRNAPhe was used, while tRNAVal was used to put there the GUU codon (UUU at the E site). Thus, the crosslinking group of mRNA analog might occupy positions –3 to +3 with respect to the first nucleotide of the codon at the P site. Irradiation of the complexes with mild UV light ( > 280 nm) resulted in the crosslinking of pUUUGUU derivatives with 18S RNA and proteins in the ribosome small subunit. The crosslinking with rRNA was observed only in the presence of tRNA. The photoactivatable group in positions –1 to +3 binds to G1207, while that in positions –2 or –3 binds to G961 of 18S RNA. In all cases, we observed crosslinking with S2 and S3 proteins irrespective of the presence of tRNA in the complex. Crosslinking with S23 and S26 proteins was observed mainly in the presence of tRNA when modified nucleotide occupied the +1 position (for both proteins) or the –3 position (for S26 protein). The crosslinking with S5/S7 proteins was substantial when modified nucleotide was in the –3 position, this crosslinking was not observed in the absence of tRNA.  相似文献   

20.
The arrangement of the stop codon and its 3′-flanking codon relative to the components of translation termination complexes of human 80S ribosomes was studied using mRNA analogs containing the stop signal UPuPuPu (Pu is A or G) and the photoreactive perfluoroarylazido group, which was linked to a stop-signal or 3′-flanking nucleotide (positions from +4 to +9 relative to the first nucleotide of the P-site codon). Upon mild UV irradiation, the analogs crosslinked to components of the model complexes, mimicking the state of the 80S ribosome at translation termination. Termination factors eRF1 and eRF3 did not change the relative arrangement of the stop signal and 18S rRNA. Crosslinking to eRF1 was observed for modified nucleotides in positions +5 to +9 (that for stop-codon nucleotide +4 was detected earlier). The eRF1 fragments crosslinked to the mRNA analogs were identified. Fragment 52–195, including the N domain and part of the M domain, crosslinked to the analogs carrying the reactive group at A or G in positions +5 to +9 or at the terminal phosphate of nucleotide +7. The site crosslinking to mRNA analogs containing modified G in positions +5 to +7 was assigned to eRF1 fragment 82–166 (beyond the NIKS motif). All but one analog (that with modified G in position +4) crosslinked to the C domain of eRF1 (fragment 330–422). The efficiency of crosslinking to the C domain was higher than to the N domain in most cases. It was assumed that the C domain of eRF1 bound in the A site is close to nucleotides +5 to +9, especially +7 and +8, and that eRF1 undergoes substantial conformational changes when binding to the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号