首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protein environment of mRNA 3' of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5'-end and a perfluoroarylazide group at one of the nucleotide residues at the 3'-end of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in triple complexes and in the absence of tRNA. Within triple complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed, it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3' of the codon in the decoding site.  相似文献   

2.
Binding of mRNA leader sequences to ribosomes was studied in conditions of a cell-free translation system based on wheat germ extract. Leader sequence of TMV mRNA (the so-called omega-RNA sequence) was able to bind simultaneously 80S ribosome and 40S ribosomal subunit. It was found that nucleotide substitutions in omega-RNA resulting in destabilization of RNA structure have no effect on the complex formation with both 80S ribosome and 40S ribosomal subunit. Leader sequence of globin mRNA is also able to form a similar joint complex. It is supposed that the ability of mRNA leader sequences to bind simultaneously 80S ribosome and 40S subunit is independent of leader nature and may reflect previously unknown eukaryotic mechanisms of translation initiation.  相似文献   

3.
Messenger RNA analogues (42-mers) containing a GAC codon (aspartic acid) in the middle of their sequence followed by a s(4)UGA stop codon were used to identify the components of the human ribosomal A site in direct contact with the photoactivatable 4-thiouridine (s(4)U) residue. We compared the behavior of the nonphased ribosome-mRNA complex, (-)tRNA(Asp), to the one of the phased complex, (+)tRNA(Asp), in the absence and in the presence of eRF1, the eukaryotic class 1 translation termination factor of human origin. The patterns of cross-links obtained for the three complexes were similar to those previously reported for rabbit ribosomes [Chavatte, L., et al. (2001) Eur. J. Biochem. 268, 2896-2904]. Cross-links involving proteins S2, S3, S3a, and S30 were poorly dependent on the presence of tRNA(Asp) and eRF1. Cross-linking to nucleotide C1696 of 18S rRNA occurred in all complexes, but its yield was at least two times higher in the phased complex with an empty A site than in the nonphased complex or when the A site was occupied by eRF1. In contrast, protein S15 cross-linked only in the phased complex in the absence of eRF1. The data obtained point to notable differences in organization of the decoding site between mammalian and prokaryotic ribosomes and to large internal mobility of the components of the tRNA (eRF1)-free A site.  相似文献   

4.
Hayes CS  Sauer RT 《Molecular cell》2003,12(4):903-911
Cells employ many mechanisms to ensure quality control during protein biosynthesis. Here, we show that, during the pausing of a bacterial ribosome, the mRNA being translated is cleaved at a site within or immediately adjacent to the A site codon. The extent of this A site mRNA cleavage is correlated with the extent of ribosome pausing as assayed by tmRNA-mediated tagging of the nascent polypeptide. Cleavage does not require tmRNA, the ribosomal alarmone (p)ppGpp, or bacterial toxins such as RelE which have been shown to stimulate a similar activity. Translation is required for cleavage, suggesting that the ribosome participates in the reaction in some fashion. When normal protein synthesis is compromised, A site mRNA cleavage and the tmRNA system provide a mechanism for reducing translational errors and the production of aberrant and potentially harmful polypeptides.  相似文献   

5.
Tobacco mosaic virus (TMV) RNA with a long 5'-terminal leader sequence, as well as its isolated leader fragment (called omega), can form disome initiation complexes with wheat germ ribosomes. The second ribosome of the disome complex is bound to the leader sequence, upstream of an 80S particle occupying the AUG-containing initiation site [ Filipowicz and Haenni (1979) Proc. Natl Acad. Sci. USA 76, 3111-3115; Konarska et al. (1981) Eur. J. Biochem. 114, 221-227]. In order to identify the parts of omega important for interaction with ribosomes, the 5'-terminally-labelled omega was treated with alkali and the resultant fragments of different lengths were used in binding experiments. A 16-nucleotide-long fragment bearing the AUU sequence at the 3' end is the shortest oligonucleotide capable of forming 80S complexes with wheat germ ribosomes. Full-length (73 nucleotides) omega with AUG at the 3' terminus is the only RNA fragment supporting disome complex formation. Synthetic oligoribonucleotides were prepared for a study of 80S complex assembly at codons other than AUG. Hexadecanucleotide (A) 13A -U-U and, to lesser extent, also (A) 13A -U-C, (A) 13A -U-A and (A) 13A -C-G bind 80S ribosomes. Formation of the (A) 13A -U-U X 80S complex is dependent on the presence of initiator Met- tRNAMerf . Assembly of the 80S particle at the AUU sequence is not an artifact resulting from the terminal position of this triplet. (A) 13A -U-U elongated with over 100 A residues still efficiently binds an 80S ribosome positioned, as established by ribosome protection experiments, at the AUU triplet. The present results support the notion that 80S initiation-like complexes can be formed at sequences containing AUU codons. The possible function of these complexes as intermediates in initiation of translation of some viral RNAs is discussed.  相似文献   

6.
The 18S rRNA nucleotides close to the 80S ribosome template nucleotide adjacent to the A-site codon on the 3-end (i.e., the nucleotide in position +7 relative to the first nucleotide of the P-site codon) were identified using template-controlled chemical affinity ligation. For this purpose, used the photoreactive mRNA analogues with a perfluorophenylazido group attached through various linkers to the uridine C5,3'-terminal phosphate, or guanosine N7 were used. The position of the mRNA analogues on the ribosome was preset using tRNAPhe, which recognized the phenylalanine codon directed to the P-site. An analysis of the rRNAs isolated from the irradiated complexes of 80S ribosomes showed that all the analogues are almost equally ligated to the 18S rRNA nucleotides we attributed to the A-site codon environment: namely, to nucleotides A1823, A1824, and A1825 of the 3'-minidomain and to the 620-630 fragment of the 18S rRNA 5'-domain. In addition, we identified a new component of the mRNA binding site of human ribosomes, nucleotide C1698 belonging to the 18S rRNA 3-minidomain, using analogues bearing a perfluorophenylazido group on uridine and guanine residues. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

7.
The arrangement of the stop codon and its 3′-flanking codon relative to the components of translation termination complexes of human 80S ribosomes was studied using mRNA analogs containing the stop signal UPuPuPu (Pu is A or G) and the photoreactive perfluoroarylazido group, which was linked to a stop-signal or 3′-flanking nucleotide (positions from +4 to +9 relative to the first nucleotide of the P-site codon). Upon mild UV irradiation, the analogs crosslinked to components of the model complexes, mimicking the state of the 80S ribosome at translation termination. Termination factors eRF1 and eRF3 did not change the relative arrangement of the stop signal and 18S rRNA. Crosslinking to eRF1 was observed for modified nucleotides in positions +5 to +9 (that for stop-codon nucleotide +4 was detected earlier). The eRF1 fragments crosslinked to the mRNA analogs were identified. Fragment 52–195, including the N domain and part of the M domain, crosslinked to the analogs carrying the reactive group at A or G in positions +5 to +9 or at the terminal phosphate of nucleotide +7. The site crosslinking to mRNA analogs containing modified G in positions +5 to +7 was assigned to eRF1 fragment 82–166 (beyond the NIKS motif). All but one analog (that with modified G in position +4) crosslinked to the C domain of eRF1 (fragment 330–422). The efficiency of crosslinking to the C domain was higher than to the N domain in most cases. It was assumed that the C domain of eRF1 bound in the A site is close to nucleotides +5 to +9, especially +7 and +8, and that eRF1 undergoes substantial conformational changes when binding to the ribosome.  相似文献   

8.
Initiation of translation of the hepatitis C virus (HCV) polyprotein is driven by an internal ribosome entry site (IRES) RNA that bypasses much of the eukaryotic translation initiation machinery. Here, single-particle electron cryomicroscopy has been used to study the mechanism of HCV IRES-mediated initiation. A HeLa in vitro translation system was used to assemble human IRES-80S ribosome complexes under near physiological conditions; these were stalled before elongation. Domain 2 of the HCV IRES is bound to the tRNA exit site, touching the L1 stalk of the 60S subunit, suggesting a mechanism for the removal of the HCV IRES in the progression to elongation. Domain 3 of the HCV IRES positions the initiation codon in the ribosomal mRNA binding cleft by binding helix 28 at the head of the 40S subunit. The comparison with the previously published binary 40S-HCV IRES complex reveals structural rearrangements in the two pseudoknot structures of the HCV IRES in translation initiation.  相似文献   

9.
Kong LK  Sarnow P 《Journal of virology》2002,76(24):12457-12462
Translation initiation in many eukaryotic mRNAs is modulated by an interaction between the cap binding protein complex, bound to the 5' end of the mRNA, and the polyadenosine binding protein, bound to the 3'-terminal polyadenosine sequences. A few cellular and viral mRNAs, such as the hepatitis C virus (HCV) mRNA genome, lack 3'-terminal polyadenosine sequences. For such mRNAs, the question of whether their 3'-end sequences also regulate the initiation phase of protein synthesis via an interaction with their 5' ends has received intense scrutiny. For HCV mRNA, various experimental designs have led to conflicting interpretations, that the 3' end of the RNA can modulate translation initiation either in a positive or in a negative fashion. To examine the possibility of end-to-end communication in HCV in detail, mRNAs containing the HCV internal ribosome entry site linked to a luciferase coding region, followed by different 3' noncoding regions, were expressed in the cytoplasm of cultured cells by T7 RNA polymerase. The intracellular translation efficiencies, steady-state levels, stabilities, and 3'-end sequences of these chimeric RNAs were examined. It was found that the HCV 3' noncoding region modulates neither the translation nor the stability of the mRNAs. Thus, there is no detectable end-to-end communication in cytoplasmically expressed chimeric mRNAs containing the HCV noncoding regions. However, it remains an open question whether end-to-end communication occurs in full-length HCV mRNAs in the infected liver.  相似文献   

10.
Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site bound codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5′-termini that could predetermine the position of the tRNAPhe on the ribosome by the P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3′ of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide—induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2–217) and/or in the C-terminal fragment 190–236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1.  相似文献   

11.
Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work.  相似文献   

12.
Positioning of each nucleotide of the E site and the P site bound codons with respect to the 18S rRNA on the human ribosome was studied by cross-linking with mRNA analogs, derivatives of the hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group on the second or the third uracil, and a derivative of the dodecaribonucleotide UUAGUAUUUAUU with a similar group on the guanine residue. The location of the modified nucleotides at any mRNA position from -3 to +3 (position +1 corresponds to the 5' nucleotide of the P site bound codon) was adjusted by the cognate tRNAs. A modified uridine at positions from -1 to +3 cross-linked to nucleotide G1207 of the 18S rRNA, and to nucleotide G961 when it was in position -2. A modified guanosine cross-linked to nucleotide G1207 if it was in position -3 of the mRNA. These data indicate that nucleotide G961 of the 18S rRNA is close only to mRNA positions -3 and -2, while G1207 is in the vicinity of positions from -3 to +3. The latter suggests that there is a sharp turn between the P and E site bound codons that brings nucleotide G1207 of the 18S rRNA close to each nucleotide of these codons. This correlates well with X-ray crystallographic data on bacterial ribosomes, indicating existence of a sharp turn between the P site and E site bound codons near a conserved nucleotide G926 of the 16S rRNA (corresponding to G1207 in 18S rRNA) close to helix 23b containing the conserved nucleotide 693 of the 16S rRNA (corresponding exactly to G961 of the 18S rRNA).  相似文献   

13.
14.
15.
The structural features of mRNA molecules that determine their relative translational rates are at present poorly defined. An early and potentially rate-limiting step in this process is the assembly of an intact 80S ribosome at the translational initiation codon. It is generally assumed that the efficiency of this reaction is controlled by structures in the 5' nontranslated region and in the immediate proximity of the AUG initiation codon. In this paper, we present an assay of initial monosome formation and measure the effects of hybridizing mRNA to complementary DNA fragments on the efficiency of this reaction. This hybridization serves to block specific regions of the mRNA from sequence-specific and intramolecular (secondary structure) interactions. We find that cDNAs that block the 5' nontranslated region, the initiation codon, or regions immediately 3' to the initiation codon markedly inhibit 80S ribosome attachment. These results are consistent with previous studies by ourselves and others which suggest that the introduction of secondary structures into this region can result in decreased translational efficiency. In addition, however, we note that cDNAs that hybridize to segments of the coding region significant distances (as many as several hundred bases) 3' to the initiation codon can also inhibit initial ribosome binding. This effect appears to be limited to duplexes within the mRNA coding region since a cDNA hybridizing exclusively within the 3' nontranslated region does not inhibit, and may actually stimulate, monosome formation. The results of this monosome formation assay therefore suggest that mRNA structures remote from the 5' terminus and initiation codon may also be important in determining the efficiency of translational initiation.  相似文献   

16.
Ribosomes translating secretory and membrane proteins are targeted to the endoplasmic reticulum membrane and attach to the protein-conducting channel and ribosome-associated membrane proteins (RAMPs). Recently, a new RAMP, ERj1p, has been identified that recruits BiP to ribosomes and regulates translational activity. Here we present the cryo-EM structure of a ribosome-ERj1p complex, revealing how ERj1p coordinates the ribosome at the membrane and how allosteric effects may mediate ERj1p's regulatory activity.  相似文献   

17.
Dissociation studies on the 80 S ribosome from Pisum sativum   总被引:1,自引:0,他引:1  
  相似文献   

18.
Schiavi A  Hudder A  Werner R 《FEBS letters》1999,464(3):118-122
A reporter gene construct was used to study the regulation of connexin43 (Cx43) expression, the major gap junction protein found in heart and uterus, in transfected cell lines. The construct had the firefly luciferase gene under the control of the Cx43 promoter. Inclusion of the 5'-untranslated region (UTR) of the mRNA in the construct increased luciferase expression by 70%. A bicistronic vector assay demonstrated that the Cx43 5'-UTR contains a strong internal ribosome entry site (IRES). Deletion analysis localized the IRES element to the upstream portion of the 5'-UTR.  相似文献   

19.
The eukaryotic ribosomal protein S26e (rpS26e) lacking eubacterial counterparts is a key component of the ribosomal binding site of mRNA region 5' of the codon positioned at the exit site. Here, we determined the rpS26e oligopeptide neighboring mRNA on the human 80S ribosome using mRNA analogues bearing perfluorophenyl azide-derivatized nucleotides at designed locations. The protein was cross-linked to mRNA analogues in specific ribosomal complexes, in which the derivatized nucleotide was located at positions -3 to -9. Digestion of cross-linked rpS26e with various specific proteolytic agents followed by identification of the resulting modified oligopeptides made it possible to map the cross-links to fragment 60-71. This fragment contains the motif YxxPKxYxK conserved in eukaryotic but not in archaeal rpS26e. Analysis of X-ray structure of the Tetrahymena thermophila 40S subunit showed that this motif is not implicated in the intraribosomal interactions, implying its involvement in translation process in a eukaryote-specific manner. Comparison of the results obtained with data on positioning of ribosomal ligands on the 40S subunit lead us to suggest that this motif is involved in interaction with both the 5'-untranslated region of mRNA and the initiation factor eIF3 specific for eukaryotes, providing new insights into molecular mechanisms of translation in eukaryotes.  相似文献   

20.
Models for two tRNAs bound to successive codons on mRNA on the ribosome   总被引:2,自引:0,他引:2  
We have investigated the structural changes necessary to build a model complex of two molecules of phenylalanine transfer RNA (tRNA(Phe) bound to successive codons in a short segment of a model messenger RNA (mRNA), consisting of U6. We keep the mRNA in an ideal helical conformation, deforming the tRNAs as necessary to eliminate steric overlaps while bringing the two 3' termini together. The resulting model has the two tRNAs oriented relative to one another in a manner that is very similar to a model developed by McDonald and Rein (1) in which the tRNAs maintain their ideal crystallographic conformations and all of the deformations are introduced into the mRNA. Consequently, regardless of how one divides the deformations between the tRNAs and the mRNA it is clear that, on the ribosome, the tRNA in the P site has its "front" side (that side with the variable loop) close to the "back" side of the tRNA in the A site (that side with the D loop). The space between the two molecules must be left free on the ribosome, in order to facilitate the transition from the A site to the P site. A detailed pathway is also proposed for changing the anticodon loop structure from that of the A site to that of the P site. The anticodon loop is always kept in a 3'-stacked conformation, since we find that the shift between the 3'-stacked and 5'-stacked structures proposed by Woese (2) is not feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号