首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The determination of the NMR structure of the sterol carrier protein-2 (SCP2), analysis of backbone (15)N spin relaxation parameters and NMR studies of nitroxide spin-labeled substrate binding are presented as a new basis for investigations of the mode of action of SCP2. The SCP2 fold is formed by a five-stranded beta-sheet and four alpha-helices. Fatty acid binding to a hydrophobic surface area formed by amino acid residues of the first and third helices, and the beta-sheet, which are all located in the polypeptide segment 8-102, was identified with the use of the spin-labeled substrate 16-doxylstearic acid. In the free protein, the lipid-binding site is covered by the C-terminal segment 105-123, suggesting that this polypeptide segment, which carries the peroxisomal targeting signal (PTS1), might be involved in the regulation of ligand binding.  相似文献   

2.

Background  

The C-terminal tetratricopeptide (TPR) repeat domain of Pex5p recognises proteins carrying a peroxisomal targeting signal type 1 (PTS1) tripeptide in their C-terminus. Previously, structural data have been obtained from the TPR domain of Pex5p in both the liganded and unliganded states, indicating a conformational change taking place upon cargo protein binding. Such a conformational change would be expected to play a major role both during PTS1 protein recognition as well as in cargo release into the peroxisomal lumen. However, little information is available on the factors that may regulate such structural changes.  相似文献   

3.
For complexes between proteins and very small hydrophobic ligands, hydrophobic effects alone may be insufficient to outweigh the unfavorable entropic terms resulting from bimolecular association. NMR relaxation experiments indicate that the backbone flexibility of mouse major urinary protein increases upon binding the hydrophobic mouse pheromone 2-sec-butyl-4,5-dihydrothiazole. The associated increase in backbone conformational entropy of the protein appears to make a substantial contribution toward stabilization of the protein-pheromone complex. This term is likely comparable in magnitude to other important free energy contributions to binding and may represent a general mechanism to promote binding of very small ligands to macromolecules.  相似文献   

4.
Within the extended receptor cycle of peroxisomal matrix import, the function of the import receptor Pex5p comprises cargo recognition and transport. While the C-terminal half (Pex5p-C) is responsible for PTS1 binding, the contribution of the N-terminal half of Pex5p (Pex5p-N) to the receptor cycle has been less clear. Here we demonstrate, using different techniques, that in Saccharomyces cerevisiae Pex5p-N alone facilitates the import of the major matrix protein Fox1p. This finding suggests that Pex5p-N is sufficient for receptor docking and cargo transport into peroxisomes. Moreover, we found that Pex5p-N can be functionally replaced by Pex18p, one of two auxiliary proteins of the PTS2 import pathway. A chimeric protein consisting of Pex18p (without its Pex7p binding site) fused to Pex5p-C is able to partially restore PTS1 protein import in a PEX5 deletion strain. On the basis of these results, we propose that the auxiliary proteins of the PTS2 import pathway fulfill roles similar to those of the N-terminal half of Pex5p in the PTS1 import pathway.  相似文献   

5.
Sterol carrier protein 2, also known as nonspecific lipid transfer protein is a ubiquitous, small, basic protein of 13 kDa found in animals. Its primary structure is highly conserved between different species, and it has been implicated in the intracellular transport of lipids and in a wide range of other in vitro functions related to sterol and fatty acid metabolism. Sterol carrier protein 2 deficiency in mice leads to elevated concentrations of phytanic acid in the serum and causes hepatocarcinogenesis. However, its actual physiological role is still unknown. Although sterol carrier protein 2 has been studied extensively in the past 20 years, very little is known concerning its three-dimensional structure. The crystal structure of rabbit sterol carrier protein 2, determined at 1.8 A resolution with the MIRAS method, shows a unique alpha/beta-fold. The core of this protein forms a five-stranded antiparallel beta-sheet flanked by five helices. A C-terminal segment (residues 114-123), together with part of the beta-sheet and four alpha-helices, form a hydrophobic tunnel providing the environment for apolar ligands such as fatty acids and fatty acyl-coenzyme As. Structurally well-characterized nonspecific lipid transfer proteins from plants have hydrophobic tunnel-like cavities, which were identified as the binding site for fatty acids and related apolar ligands. Despite the fact that plant nonspecific lipid transfer proteins are smaller proteins than sterol carrier protein 2, show no sequence homology to sterol carrier protein 2, and are structurally unrelated, the cavities of these two classes of proteins are very similar with respect to size, shape, and hydrophobicity, suggesting a common functional role.  相似文献   

6.
The Pex5p receptor recognizes newly synthesized peroxisomal matrix proteins which have a C-terminal peroxisomal targeting signal to the peroxisome. After docking to protein complexes on the membrane, these proteins are translocated across the membrane. The docking mechanism remains unclear, as no structural data on the multicomponent docking complex are available. As the interaction of the cargo-loaded Pex5p receptor and the peroxisomal membrane protein Pex14p is the essential primary docking step, we have investigated the solution structure of these complexes by small angle x-ray scattering and static light scattering. Titration studies yielded a 1:6 stoichiometry for the Pex5p·Pex14p complex, and low resolution structural models were reconstructed from the x-ray scattering data. The free full-length human Pex5p is monomeric in solution, with an elongated, partially unfolded N-terminal domain. The model of the complex reveals that the N terminus of Pex5p remains extended in the presence of cargo and Pex14p, the latter proteins being significantly intermingled with the Pex5p moiety. These results suggest that the extended structure of Pex5p may play a role in interactions with other substrates such as lipids and membrane proteins during the formation of functional multiprotein complexes.Peroxisomes are ubiquitous organelles in eukaryotes which are involved in different metabolic pathways (1). Peroxisomal matrix proteins, which contain a peroxisomal targeting signal (PTS),4 are imported into the peroxisome by recognition of two different import receptors, Pex5p or Pex7p. These receptors recognize specific signal sequences, PTS1 and PTS2, respectively (1). At the molecular level the C-terminal PTS1 signal is bound in a central cavity of the ring-like structure of the seven tetrapeptide repeat (TPR) domains of the C-terminal part of Pex5p (Pex5p(C)) (25). It was recently proposed that some of the structural principles of the Pex5p/cargo interaction may also apply to the PTS2 cargo recognition of the Pex7p receptor (5).The next step of PTS-protein import, docking of the cargo loaded receptor to the translocon, involves the peroxisomal protein Pex14p (6). Multiple Pex14p binding sites with di-aromatic pentapeptide motifs (WXXX(F/Y)) were shown to be present in the N terminus of Pex5p (79). The number of these motifs, however, varies among species. The human Pex5p receptor, which has been investigated in this contribution, has a total of seven motifs. A recent NMR structure of the N-terminal domain of Pex14p and the first WXXX(F/Y) motif of Pex5p reveals an α-helical conformation of the motif (10). Interactions between Pex5p and other proteins and by their association with the peroxisomal membrane possibly lead to dissociation of the PTS-protein from Pex5p (1113). The exact sequence of events in the import mechanism remains, however, unknown. It is in particular unclear how, in contrast with other organelles, peroxisomes can import folded oligomeric, functional proteins (14).Previous biophysical work indicated that the N terminus half of Pex5p is unfolded in vitro (15, 16). Recent protease sensitivity assays showed that the proteolytic profiles of the full-length receptor Pex5p(F) change in the presence of PTS1 peptide and the Pex13p Src homology 3 domain, which is another docking factor (16, 17), indicating conformational changes of Pex5p upon binding these receptor ligands. Furthermore, it was found that Pex5p may even traverse the peroxisomal membrane, leaving only a small N-terminal fragment in the cytosol while exposing the C-terminal TPR domain to the luminal side of the membrane (11).Although recognition of many PTS cargos seems to be confined to the C-terminal TPR domains of Pex5p, it has become clear that the N-terminal part of Pex5p is primarily involved in docking of the receptor onto the peroxisomal membrane and other docking factors. Because only poorly diffracting crystals have been purified to date, we investigated its solution structure by small angle x-ray scattering (SAXS) and static light scattering (SLS). Complexes with the PTS1 cargo sterol carrier protein 2 (SCP2), which functions as lipid transfer protein, were also studied as the crystal structure of Pex5p(C)/SCP2 is already known (4). Our results indicate that human Pex5p(F) is a monomer with an extended N terminus. The stoichiometry of Pex5p(F)·Pex14p(N)·PTS1 complex has been assessed by titration with SAXS, SLS, and gel filtration, and a low resolution structural model of the complex has been reconstructed in which Pex5p(F) remains extended upon Pex14p(N) binding.  相似文献   

7.
The refined structure of a wheat type 2 nonspecific lipid transfer protein (ns-LTP2) liganded with l-alpha-palmitoylphosphatidylglycerol has been determined by NMR. The (15)N-labeled protein was produced in Pichia pastoris. Physicochemical conditions and ligandation were intensively screened to obtain the best NMR spectra quality. This ns-LTP2 is a 67-residue globular protein with a diameter of about 30 A. The structure is composed of five helices forming a right superhelix. The protein presents an inner cavity, which has been measured at 341 A(3). All of the helices display hydrophobic side chains oriented toward the cavity. The phospholipid is found in this cavity. Its fatty acid chain is completely inserted in the protein, the l-alpha-palmitoylphosphatidylglycerol glycerol moiety being located on a positively charged pocket on the surface of the protein. The superhelix structure of the protein is coiled around the fatty acid chain. The overall structure shows similarities with ns-LTP1. Nevertheless, large three-dimensional structural discrepancies are observed for the H3 and H4 alpha-helices, the C-terminal region, and the last turn of the H2 helix. The lipid is orthogonal to the orientation observed in ns-LTP1. The volume of the hydrophobic cavity appears to be in the same range as the one of ns-LTP1, despite the fact that ns-LTP2 is shorter by 24 residues.  相似文献   

8.
The majority of peroxisomal matrix proteins are recognized by the import receptor Pex5p. The receptor is dynamic in terms of its overall architecture and association with the peroxisomal membrane. It participates in different protein complexes during the translocation of cargos from the cytosol to the peroxisomal matrix. Its sequence comprises two structurally and functionally autonomous parts. The N-terminal segment interacts with several peroxins that assemble into distinct protein complexes during cargo translocation. Despite evidence for alpha-helical binding motifs for some of these components (Pex13p, Pex14p) its overall appearance is that of a molten globule and folding/unfolding transitions may play a critical role in its function. In contrast, most of the C-terminal part of the receptor folds into a ring-like alpha-helical structure and binds folded and functionally intact peroxisomal targets that bear a C-terminal peroxisomal targeting signal type-1. Some of these targets also bind to secondary binding sites of the receptor.  相似文献   

9.
Alanine-glyoxylate aminotransferase is a peroxisomal enzyme, of which various missense mutations lead to irreversible kidney damage via primary hyperoxaluria type 1, in part caused by improper peroxisomal targeting. To unravel the molecular mechanism of its recognition by the peroxisomal receptor Pex5p, we have determined the crystal structure of the respective cargo-receptor complex. It shows an extensive protein/protein interface, with contributions from residues of the peroxisomal targeting signal 1 and additional loops of the C-terminal domain of the cargo. Sequence segments that are crucial for receptor recognition and hydrophobic core interactions within alanine-glyoxylate aminotransferase are overlapping, explaining why receptor recognition highly depends on a properly folded protein. We subsequently characterized several enzyme variants in vitro and in vivo and show that even minor protein fold perturbations are sufficient to impair Pex5p receptor recognition. We discuss how the knowledge of the molecular parameters for alanine-glyoxylate aminotransferase required for peroxisomal translocation could become useful for improved hyperoxaluria type 1 treatment.  相似文献   

10.
In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1–110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.  相似文献   

11.
Peroxisomal PTS2-dependent matrix protein import starts with the recognition of the PTS2 targeting signal by the import receptor Pex7p. Subsequently, the formed Pex7p/cargo complex is transported from the cytosol to the peroxisomal docking complex, consisting of Pex13p and Pex14p. In Saccharomyces cerevisiae, the latter event is thought to require the redundant Pex18p and Pex21p. Here we mapped the Pex7p interaction domain of Pex13p to its N-terminal 100 amino acids. Pex18p and Pex21p also interacted with this region, albeit only in the presence of Pex7p. Expression of an N-terminally deleted version of Pex13p in a pex13delta mutant failed to restore growth on fatty acids due to a specific defect in the import of PTS2-containing proteins. We further show by yeast two-hybrid analysis, coimmunoprecipitation, and in vitro binding assays that Pex7p can bind Pex13p and Pex14p in the absence of Pex18p/Pex21p. The PTS2 protein thiolase was shown to interact with Pex14p but not with Pex13p in a Pex7p- and Pex18p/Pex21p-dependent manner, suggesting that only Pex14p binds cargo-loaded PTS2 receptor. We also found that the cytosolic Pex7p/thiolase-containing complex includes Pex18p. This complex accumulated in docking mutants but was absent in cells lacking Pex18p/Pex21p, indicating that Pex18p/Pex21p are required already before the docking event.  相似文献   

12.
The protein Pex19p functions as a receptor and chaperone of peroxisomal membrane proteins (PMPs). The crystal structure of the folded C‐terminal part of the receptor reveals a globular domain that displays a bundle of three long helices in an antiparallel arrangement. Complementary functional experiments, using a range of truncated Pex19p constructs, show that the structured α‐helical domain binds PMP‐targeting signal (mPTS) sequences with about 10 μM affinity. Removal of a conserved N‐terminal helical segment from the mPTS recognition domain impairs the ability for mPTS binding, indicating that it forms part of the mPTS‐binding site. Pex19p variants with mutations in the same sequence segment abolish correct cargo import. Our data indicate a divided N‐terminal and C‐terminal structural arrangement in Pex19p, which is reminiscent of a similar division in the Pex5p receptor, to allow separation of cargo‐targeting signal recognition and additional functions.  相似文献   

13.
The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo.  相似文献   

14.
The backbone dynamics of bovine heart fatty acid binding protein (H-FABP) and porcine ileal lipid binding protein (ILBP) were studied by 15N NMR relaxation (T1 and T2) and steady state heteronuclear 15N{1H} NOE measurements. The microdynamic parameters characterizing the backbone mobility were determined using the model-free approach. For H-FABP, the non-terminal backbone amide groups display a rather compact protein structure of low flexibility. In contrast, for ILBP an increased number of backbone amide groups display unusually high internal mobility. Furthermore, the data indicate a higher degree of conformational exchange processes in the sec-msec time range for ILBP compared to H-FABP. These results suggest significant differences in the conformational stability for these two structurally highly homologous members of the fatty acid binding protein family.  相似文献   

15.
Alphaviruses are enveloped, insect-borne viruses, which contain a positive-sense RNA genome. The protein capsid is surrounded by a lipid membrane, which is penetrated by glycoprotein spikes. The structure of the Sindbis virus (SINV) (the type virus) core protein (SCP) was previously determined and found to have a chymotrypsin-like structure. SCP is a serine proteinase which cleaves itself from a polyprotein. Semliki Forest virus (SFV) is among the most distantly related alphaviruses to SINV. Similar to SCP, autocatalysis is inhibited in SFCP after cleavage of the polyprotein by leaving the carboxy-terminal tryptophan in the specificity pocket. The structures of two different crystal forms (I and II) of SFV core protein (SFCP) have been determined to 3.0 Å and 3.3 Å resolution, respectively. The SFCP monomer backbone structure is very similar to that of SCP. The dimeric association between monomers, A and B, found in two different crystal forms of SCP is also present in both crystal forms of SFCP. However, a third monomer, C, occurs in SFCP crystal form I. While monomers A and B make a tail-to-tail dimer contact, monomers B and C make a head-to-head dimer contact. A hydrophobic pocket on the surface of the capsid protein, the proposed site of binding of the E2 glycoprotein, has large conformational differences with respect to SCP and, in contrast to SCP, is found devoid of bound peptide. In particular, Tyr184 is pointing out of the hydrophobic pocket in SFCP, whereas the equivalent tyrosine in SCP is pointing into the pocket. The conformation of Tyr184, found in SFCP, is consistent with its availability for iodination, as observed in the homologous SINV cores. This suggests, by comparison with SCP, that E2 binding to cores causes major conformational changes, including the burial of Tyr184, which would stabilize the intact virus on budding from an infected cell. The head-to-tail contacts found in the pentameric and hexameric associations within the virion utilize the same monomer surface regions as found in the crystalline dimer interfaces. Proteins 27:345–359, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.  相似文献   

17.
Toll-like receptor 2 (TLR2), a member of the TLR innate immune receptor family, recognizes lipoproteins from bacteria and modulates the immune response by inducing the expression of various cytokines. TLR2 has a large hydrophobic pocket that recognizes long fatty acyl groups on TLR2 ligands. However, few studies have focused on the property of the hydrophobic TLR2 pocket. Based on the X-ray crystal structure of TLR2, small polar regions were found in the hydrophobic TLR2 pocket. Interactions between the polar residues and ligands were explored here by designing and synthesizing a Pam2CSK4 derivative of the TLR2 ligands, containing an amide group within the lipid moiety. We evaluated the binding affinities and immunomodulatory activities of these ligands. Results suggested that the amide groups in the lipid chain interacted with the polar residues in the hydrophobic lipid-binding pocket of TLR2.  相似文献   

18.
Two isoforms of the peroxisomal targeting signal type 1 (PTS1) receptor, termed Pex5pS and (37-amino-acid-longer) Pex5pL, are expressed in mammals. Pex5pL transports PTS1 proteins and Pex7p-PTS2 cargo complexes to the initial Pex5p-docking site, Pex14p, on peroxisome membranes, while Pex5pS translocates only PTS1 cargoes. Here we report functional Pex5p domains responsible for interaction with peroxins Pex7p, Pex13p, and Pex14p. An N-terminal half, such as Pex5pL(1-243), comprising amino acid residues 1 to 243, bound to Pex7p, Pex13p, and Pex14p and was sufficient for restoring the impaired PTS2 import of pex5 cell mutants, while the C-terminal tetratricopeptide repeat motifs were required for PTS1 binding. N-terminal Pex5p possessed multiple Pex14p-binding sites. Alanine-scanning analysis of the highly conserved seven (six in Pex5pS) pentapeptide WXXXF/Y motifs residing at the N-terminal region indicated that these motifs were essential for the interaction of Pex5p with Pex14p and Pex13p. Moreover, mutation of several WXXXF/Y motifs did not affect the PTS import-restoring activity of Pex5p, implying that the binding of Pex14p to all of the WXXXF/Y sites was not a prerequisite for the translocation of Pex5p-cargo complexes. Pex5p bound to Pex13p at the N-terminal part, not to the C-terminal SH3 region, via WXXXF/Y motifs 2 to 4. PTS1 and PTS2 import required the interaction of Pex5p with Pex14p but not with Pex13p, while Pex5p binding to Pex13p was essential for import of catalase with PTS1-like signal KANL. Pex5p recruited PTS1 proteins to Pex14p but not to Pex13p. Pex14p and Pex13p formed a complex with PTS1-loaded Pex5p but dissociated in the presence of cargo-unloaded Pex5p, implying that PTS cargoes are released from Pex5p at a step downstream of Pex14p and upstream of Pex13p. Thus, Pex14p and Pex13p very likely form mutually and temporally distinct subcomplexes involved in peroxisomal matrix protein import.  相似文献   

19.
The peroxisomal matrix protein import is facilitated by cycling receptor molecules that shuttle between the cytosol and the peroxisomal membrane. In the yeast Saccharomyces cerevisiae, the import of proteins harboring a peroxisomal targeting signal of type II (PTS2) is mediated by the receptor Pex7p and its co-receptor Pex18p. Here we demonstrate that Pex18p undergoes two kinds of ubiquitin modifications. One of these ubiquitination events depends on lysines 13 and 20 and forces rapid Pex18p turnover by proteasomal degradation. A cysteine residue near the extreme Pex18p amino-terminus is required for the second type of ubiquitination. It turned out that this cysteine residue at position 6 is essential for the function of Pex18p in peroxisomal protein import but does not contribute to receptor-cargo association and binding to the peroxisomal import apparatus. However, in contrast to the wild-type protein, cysteine 6-mutated Pex18p is arrested in a membrane-protected state, whereas Pex7p is accessible in a protease protection assay. This finding indicates that Pex18p export is linked to cargo translocation, which supports the idea of an export-driven import of proteins into peroxisomes.  相似文献   

20.
Pex19p is a peroxin involved in peroxisomal membrane biogenesis and probably functions as a chaperone and/or soluble receptor specific for cargo peroxisomal membrane proteins (PMPs). To elucidate the functional constituents of Pex19p in terms of the protein structure, we investigated its domain architecture and binding affinity toward various PMPs and peroxins. The human Pex19p cDNA was overexpressed in Escherichia coli, and a highly purified sample of the Pex19p protein was prepared. When PMP22 was synthesized by cell-free translation in the presence of Pex19p, the PMP22 bound to Pex19p was soluble, whereas PMP22 alone was insoluble. This observation shows that Pex19p plays a role in capturing PMP and maintaining its solubility. In a similar manner, Pex19p was bound to PMP70 and Pex16p as well as the Pex3p soluble fragment. Limited proteolysis analyses revealed that Pex19p consists of the C-terminal core domain flanking the flexible N-terminal region. Separation of Pex19p into its N- and C-terminal halves abolished interactions with PMP22, PMP70, and Pex16p. In contrast, the flexible N-terminal half of Pex19p was bound to the Pex3p soluble fragment, suggesting that the binding mode of Pex3p toward Pex19p differs from that of other PMPs. This idea is supported by our detection of the Pex19p-Pex3p-PMP22 ternary complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号