首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugihara M  Buss V  Entel P  Elstner M  Frauenheim T 《Biochemistry》2002,41(51):15259-15266
Density functional theory (DFT) calculations based on the self-consistent-charge tight-binding approximation have been performed to study the influence of the protein pocket on the 3-dimensional structure of the 11-cis-retinal Schiff base (SB) chromophore. Starting with an effectively planar chromophore embedded in a protein pocket consisting of the 27 next-nearest amino acids, the relaxed chromophore geometry resulting from energy optimization and molecular dynamics (MD) simulations has yielded novel insights with respect to the following questions: (i) The conformation of the beta-ionone ring. The protein pocket tolerates both conformations, 6-s-cis and 6-s-trans, with a total energy difference of 0.7 kcal/mol in favor of the former. Of the two possible 6-s-cis conformations, the one with a negative twist angle (optimized value: -35 degrees ) is strongly favored, by 3.6 kcal/mol, relative to the one in which the dihedral is positive. (ii) Out-of-plane twist of the chromophore. The environment induces a nonplanar helical deformation of the chromophore, with the distortions concentrated in the central region of the chromophore, from C10 to C13. The dihedral angle between the planes formed by the bonds from C7 to C10 and from C13 to C15 is 42 degrees. (iii) The absolute configuration of the chromophore. The dihedral angle about the C12-C13 bond is +170 degrees from planar s-cis, which imparts a positive helicity on the chromophore, in agreement with earlier considerations based on theoretical and spectroscopic evidence.  相似文献   

2.
Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red-absorbing form Pr and the far-red-absorbing form Pfr. Agrobacterium tumefaciens has two phytochromes, Agp1 and Agp2, with antagonistic properties: in darkness, Agp1 converts slowly from Pfr to Pr, whereas Agp2 converts slowly from Pr to Pfr. In a previous study, we have assembled Agp1 with synthetic locked chromophores 15Za, 15Zs, 15Ea, and 15Es in which the C15=C16 double bond is fixed in either the E or Z configuration and the C14-C15 single bond is fixed in either the syn (s) or anti (a) conformation. In the present study, the locked chromophores 5Za and 5Zs were used for assembly with Agp1; in these chromophores, the C4=C5 double bond is fixed in the Z configuration, and the C5-C6 single bond is fixed in either the syn or anti conformation. All locked chromophores were also assembled with Agp2. The data showed that in both phytochromes the Pr chromophore adopts a C4=C5 Z C5-C6 syn C15=C16 Z C14-C15 anti stereochemistry and that in the Pfr chromophore the C15=C16 double bond has isomerized to the E configuration, whereas the C14-C15 single bond remains in the anti conformation. Photoconversion shifted the absorption maxima of the 5Zs adducts to shorter wavelengths, whereas the 5Za adducts were shifted to longer wavelengths. Thus, the C5-C6 single bond of the Pfr chromophore is rather in an anti conformation, supporting the previous suggestion that during photoconversion of phytochromes, a rotation around the ring A-B connecting single bond occurs.  相似文献   

3.
The chromophore conformations of the red and far red light induced product states "Pfr" and "Pr" of the N-terminal photoreceptor domain Cph1-N515 from Synechocystis 6803 have been investigated by NMR spectroscopy, using specific 13C isotope substitutions in the chromophore. 13C-NMR spectroscopy in the Pfr and Pr states indicated reversible chemical shift differences predominantly of the C(4) carbon in ring A of the phycocyanobilin chromophore, in contrast to differences of C15 and C5, which were much less pronounced. Ab initio calculations of the isotropic shielding and optical transition energies identify a region for C4-C5-C6-N2 dihedral angle changes where deshielding of C4 is correlated with red-shifted absorption. These could occur during thermal reactions on microsecond and millisecond timescales after excitation of Pr which are associated with red-shifted absorption. A reaction pathway involving a hula-twist at C5 could satisfy the observed NMR and visible absorption changes. Alternatively, C15 Z-E photoisomerization, although expected to lead to a small change of the chemical shift of C15, in addition to changes of the C4-C5-C6-N2 dihedral angle could be consistent with visible absorption changes and the chemical shift difference at C4. NMR spectroscopy of a 13C-labeled chromopeptide provided indication for broadening due to conformational exchange reactions in the intact photoreceptor domain, which is more pronounced for the C- and D-rings of the chromophore. This broadening was also evident in the F2 hydrogen dimension from heteronuclear 1H-13C HSQC spectroscopy, which did not detect resonances for the 13C5-H, 13C10-H, and 13C15-H hydrogen atoms whereas strong signals were detected for the (13)C-labeled chromopeptide. The most pronounced 13C-chemical shift difference between chromopeptide and intact receptor domain was that of the 13C4-resonance, which could be consistent with an increased conformational energy of the C4-C5-C6-N2 dihedral angle in the intact protein in the Pr state. Nuclear Overhauser effect spectroscopy experiments of the 13C-labeled chromopeptide, where chromophore-protein interactions are expected to be reduced, were consistent with a ZZZssa conformation, which has also been found for the biliverdin chromophore in the x-ray structure of a fragment of Deinococcus radiodurans bacteriophytochrome in the Pr form.  相似文献   

4.
Buss V 《Chirality》2001,13(1):13-23
CASSCF and GAUSSIAN CIS calculations were performed on ground and excited states of different conformations of 11-cis-retinal protonated Schiff bases, the chromophore of rhodopsin, in order to study their chiroptical properties and attempt a correlation between absolute conformation and CD-spectral data. Geometries were taken from molecular models, from published rhodopsin models, and from retinal conformations obtained from molecular dynamics with geometry restraints. In all the cases studied we find that a positive sense of twist about the C12-C13 bond correlates with a calculated positive CD of the long wavelength absorption band; the twist of the C6-C7 bond modulates this primary contribution of the C12-C13 bond. The correlation of the beta-band with structural features is not straightforward. Calculations on bathorhodopsin lend support to the idea that this intermediate is a highly twisted all-trans-conformation.  相似文献   

5.
Phytochrome photoreceptors undergo reversible photoconversion between the red-absorbing form, Pr, and the far-red-absorbing form, Pfr. The first step in the conversion from Pr to Pfr is a Z to E isomerization around the C15=C16 double bond of the bilin chromophore. We prepared four synthetic biliverdin (BV) derivatives in which rings C and D are sterically locked by cyclizing with an additional carbon chain. In these chromophores, which are termed 15Za, 15Zs, 15Ea, and 15Es, the C15=C16 double bond is in either the Z or E configuration and the C14-C15 single bond in either the syn or anti conformation. The chromophores were assembled with Agrobacterium phytochrome Agp1, which incorporates BV as natural chromophore. All locked BV derivatives bound covalently to the protein and formed adducts with characteristic spectral properties. The 15Za adduct was spectrally similar to the Pr form and the 15Ea adduct similar to the Pfr form of the BV adduct. Thus, the chromophore of Agp1 adopts a C15=C16 Z configuration and a C14-C15 anti conformation in the Pr form and a C15=C16 E configuration and a C14-C15 anti conformation in the Pfr form. Both the 15Zs and the 15Es adducts absorbed only in the blue region of the visible spectra. All chromophore adducts were analyzed by size exclusion chromatography and histidine kinase activity to probe for protein conformation. In either case, the 15Za adduct behaved like the Pr and the 15Ea adduct like the Pfr form of Agp1. Replacing the natural chromophore by a locked 15Ea derivative can thus bring phytochrome holoprotein in the Pfr form in darkness. In this way, physiological action of Pfr can be studied in vivo and separated from Pr/Pfr cycling and other light effects.  相似文献   

6.
Ab initio RHF and DFT/B3LYP calculations at the 6-31G** level have been performed to study possible conformations of the cyclopropyl retinal Schiff base analog 3 of known absolute configuration. In both the free base and the protonated form, the geometries are determined on the diene side by optimum conjugative interaction with the three-membered ring, on the triene side by repulsive interaction with the 9-methyl group. There are three low energy conformations, in which the seven-membered ring is either in a chair or in a twist-chair conformation. To decide between these alternatives, chiroptical parameters were calculated employing the GAUSSIAN/CIS routines and compared with the CD spectrum obtained by Nakanishi et al. Of the energy-minimized geometries only two fit the experimental data. In both, the dihedral angle C12-C13, which is indicative of the relative orientation of the two chromophores, is positive.  相似文献   

7.
Singh D  Hudson BS  Middleton C  Birge RR 《Biochemistry》2001,40(14):4201-4204
In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of rhodopsin within the opsin matrix has been the subject of much speculation. There have been two recent reliable and precise NMR results that bear on this issue. One involves a determination of the C20-C10 and C20-C11 distances by Verdegem et al. [Biochemistry 38, 11316-11324 (1999)]. The other is the determination of the orientation of the methine C to methyl group vectors C5-C18, C9-C19, and C13-C20 relative to the membrane normal by Gr?bner et al. [Nature 405 (6788), 810-813 (2000)]. Using molecular orbital methods that include extensive configuration interaction, we have determined what we propose to be the minimum energy conformation of this chromophore. The above NMR results permit us to check this structure in the C10-C11=C12-C13 region and then to check the global structure via the relative orientation of the three C18, C19, and C20 methyl groups. This method provides a detailed structure and also the orientation for the retinyl chromophore relative to the membrane normal and argues strongly that the protein does not appreciably alter the chromophore geometry from its minimum energy configuration that is nearly planar s-trans at the 6-7 bond. Finally, the chromophore structure and orientation presented in the recently published X-ray diffraction structure is compared with our proposed structure and with the deuterium NMR results.  相似文献   

8.
In recent years, structural information about bacteriorhodopsin has grown substantially with the publication of several crystal structures. However, precise measurements of the chromophore conformation in the various photocycle states are still lacking. This information is critical because twists about the chromophore backbone chain can influence the Schiff base nitrogen position, orientation, and proton affinity. Here, we focus on the C14-C15 bond, using solid-state nuclear magnetic resonance spectroscopy to measure the H-C14-C15-H dihedral angle. In the resting state (bR(568)), we obtain an angle of 164 +/- 4 degrees, indicating a 16 degrees distortion from a planar all-trans chromophore. The dihedral angle is found to decrease to 147 +/- 10 degrees in the early M intermediate (M(o)) and to 150 +/- 4 degrees in the late M intermediate (M(n)). These results demonstrate changes in the chromophore conformation undetected by recent X-ray diffraction studies.  相似文献   

9.
Lemaître V  Yeagle P  Watts A 《Biochemistry》2005,44(38):12667-12680
The formation of photointermediates and conformational changes observed in the retinal chromophore of bilayer-embedded rhodopsin during the early steps of the protein activation have been studied by molecular dynamics (MD) simulation. In particular, the lysine-bound retinal has been examined, focusing on its conformation in the dark-adapted state (10 ns) and on the early steps after the isomerization of the 11-cis bond to trans (up to 10 ns). The parametrization for the chromophore is based on a recent quantum study [Sugihara, M., Buss, V., Entel, P., Elstner, M., and Frauenheim, T. (2002) Biochemistry 41, 15259-15266] and shows good conformational agreement with recent experimental results. The isomerization, induced by switching the function governing the dihedral angle for the C11=C12 bond, was repeated with several different starting conformations. From the repeated simulations, it is shown that the retinal model exhibits a conserved activation pattern. The conformational changes are sequential and propagate outward from the C11=C12 bond, starting with isomerization of the C11=C12 bond, then a rotation of methyl group C20, and followed by increased fluctuations at the beta-ionone ring. The dynamics of these changes suggest that they are linked with photointermediates observed by spectroscopy. The exact moment when these events occur after the isomerization is modulated by the starting conformation, suggesting that retinal isomerizes through multiple pathways that are slightly different. The amplitudes of the structural fluctuations observed for the protein in the dark-adapted state and after isomerization of the retinal are similar, suggesting a subtle mechanism for the transmission of information from the chromophore to the protein.  相似文献   

10.
We present molecular dynamics simulations of bovine rhodopsin in a membrane mimetic environment based on the recently refined X-ray structure of the pigment. The interactions between the protonated Schiff base and the protein moiety are explored both with the chromophore in the dark-adapted 11-cis and in the photoisomerized all-trans form. Comparison of simulations with Glu181 in different protonation states strongly suggests that this loop residue located close to the 11-cis bond bears a negative charge. Restrained molecular dynamics simulations also provide evidence that the protein tightly confines the absolute conformation of the retinal around the C12-C13 bond to a positive helicity. 11-cis to all-trans isomerization leads to an internally strained chromophore, which relaxes after a few nanoseconds by a switching of the ionone ring to an essentially planar all-trans conformation. This structural transition of the retinal induces in turn significant conformational changes of the protein backbone, especially in helix VI. Our results suggest a possible molecular mechanism for the early steps of intramolecular signal transduction in a prototypical G-protein-coupled receptor.  相似文献   

11.
The motile, unicellular, eukaryotic alga Chlamydomonas reinhardtii exhibits two distinct behavioral reactions to light stimuli, phototaxis and the photophobic response. Both are mediated by retinal-containing receptors. This paper focuses on a direct comparison of the two photoresponses and the chromophore requirements for their photoreceptor(s). Using computerized motion analysis assays for phototaxis and photophobic responses by the same populations of cells, we measured the ability of various isomers and analogues of retinal to reconstitute photobehavior in the pigment-deficient mutant FN68. The results indicate that photophobic and phototaxis responses each require chromophores with an all-trans polyene chain configuration, planar ionone ring/polyene chain conformation, and the ability to isomerize around the retinal C13-C14 double bond. One difference between the two behaviors is that the photophobic response becomes highly desensitized after light stimuli to which the phototaxis response does not become desensitized, indicating the existence of at least one distinct step in the photophobic response pathway. A second difference is that the retinal regeneration of the photophobic response but not of phototaxis is inhibited by a 5-membered ring 13-trans-locked analogue. While showing close similarity in the chromophore structural requirements of the two behaviors, the results indicate that differences exist between the two responses at the level of their photoreceptor proteins and/or in their transduction processes.  相似文献   

12.
Rotational resonance solid state nuclear magnetic resonance has been used to determine the relative orientation of the beta-ionone ring and the polyene chain of the chromophore 11-Z-retinylidene of rhodopsin in rod outer segment membranes from bovine retina. The bleached protein was regenerated with either 11-Z-[8,18-(13)C(2)]retinal or 11-Z-[8,16/17(13)C(2)]retinal, the latter having only one (13)C label at either of the chemically equivalent positions 16 and 17. Observation of (13)C selectively enriched in the ring methyl groups, C16/17, revealed alternative conformational states for the ring. Minor spectral components comprised around 26% of the chromophore. The major conformation (approximately 74%) has the chemical shift resolution required for measuring internuclear distances to (13)C in the retinal chain (C8) separately from each of these methyl groups. The resulting distance constraints, C8 to C16 and C17 (4.05 +/- 0.25 A) and from C8 to C18 (2.95 +/- 0.15 A), show that the major portion of retinylidene in rhodopsin has a twisted 6-s-cis conformation. The more precise distance measurement made here between C8 and C18 (2.95 A) predicts that the chain is twisted out-of-plane with respect to the ring by a modest amount (C5-C6-C7-C8 torsion angle = -28 +/- 7 degrees ).  相似文献   

13.
X-ray, NMR and molecular mechanics studies on pentostatin (C11H16N4O4), a potent inhibitor of the enzyme adenosine deaminase, have been carried out to study the structure and conformation. The crystals belong to the monoclinic space group P21 with the cell dimensions of a = 4.960(1), b = 10.746(3), c = 11.279(4)A, beta = 101.18(2) degrees and Z = 2. The structure was solved by direct methods and difference Fourier methods and refined to an R value of 0.047 for 997 reflections. The trihydrodiazepine ring is nonplanar and adopts a distorted sofa conformation with C(7) deviated from the mean plane by 0.66A. The deoxyribose ring adopts a C3'-endo conformation, different from coformycin where the sugar has a C2'-endo conformation. The observed glycosidic torsion angle (chi = -119.5 degrees) is in the anti range. The conformation about the C(4')-C(5') bond is gauche+. The conformation of the molecule is compared with that of coformycin and 2-azacoformycin. 1 and 2D NMR studies have been carried out and the dihedral angles obtained from coupling constants have been compared with those obtained from the crystal structure. The conformation of deoxyribose in solution is approximately 70% S and 30% N. Molecular mechanics studies were performed to obtain the energy minimized conformation, which is compared with X-ray and NMR results.  相似文献   

14.
We used 11-cis 13-demethylretinal to examine the physiological consequences of retinal's noncovalent interaction with opsin in intact rod and cone photoreceptors during visual pigment regeneration. 11-Cis 13-demethylretinal is an analog of 11-cis retinal in which the 13 position methyl group has been removed. Biochemical experiments have shown that it is capable of binding in the chromophore pocket of opsin, forming a Schiff-base linkage with the protein to produce a pigment, but at a much slower rate than the native 11-cis retinal (Nelson, R., J. Kim deReil, and A. Kropf. 1970. Proc. Nat. Acad. Sci. USA. 66:531-538). Experimentally, this slow rate of pigment formation should allow separate physiological examination of the effects of the initial binding of retinal in the pocket and the subsequent formation of the protonated Schiff-base linkage. Currents from solitary rods and cones from the tiger salamander were recorded in darkness before and after bleaching and then after exposure to 11-cis 13-demethylretinal. In bleach-adapted rods, 11-cis 13-demethylretinal caused transient activation of phototransduction, as evidenced by a decrease of the dark current and sensitivity, acceleration of the dim flash responses, and activation of cGMP phosphodiesterase and guanylyl cyclase. The steady state of phototransduction activity was still higher than that of the bleach-adapted rod. In contrast, exposure of bleach-adapted cones to 11-cis 13-demethylretinal resulted in an immediate deactivation of transduction as measured by the same parameters. These results extend the validity of a model for the effects of the noncovalent binding of a retinoid in the chromophore pockets of rod and cone opsins to analogs capable of forming a Schiff-base and imply that the noncovalent binding by itself may play a role for the dark adaptation of photoreceptors.  相似文献   

15.
Resonance Raman analysis of the Pr and Pfr forms of phytochrome   总被引:4,自引:0,他引:4  
S P Fodor  J C Lagarias  R A Mathies 《Biochemistry》1990,29(50):11141-11146
Resonance Raman vibrational spectra of the Pr and Pfr forms of oat phytochrome have been obtained at room temperature. When Pr is converted to Pfr, new bands appear in the C = C and C = N stretching region at 1622, 1599, and 1552 cm-1, indicating that a major structural change of the chromophore has occurred. The Pr to Pfr conversion results in an 11 cm-1 lowering of the N-H rocking band from 1323 to 1312 cm-1. Normal mode calculations correlate this frequency drop with a Z----E isomerization about the C15 = C16 bond. A line at 803 cm-1 in Pr is replaced by an unusually intense mode at 814 cm-1 in Pfr. Calculations on model tetrapyrrole chromophores suggest that these low-wavenumber modes are hydrogen out-of-plane (HOOP) wagging vibrations of the bridging C15 methine hydrogen and that both the intensity and frequency of the C15 HOOP mode are sensitive to the geometry around the C14-C15 and C15 = C16 bonds. The large intensity of the 814-cm-1 mode in Pfr indicates that the chromophore is highly distorted from planarity around the C15 methine bridge. If the Pr----Pfr conversion does involve a C15 = C16 Z----E isomerization, then the intensity of the C15 HOOP mode in Pfr argues that the chromophore has an E,anti conformation. On the basis of a comparison with the vibrational calculations, the low frequency (803 cm-1) and the reduced intensity of the C15 HOOP mode in Pr suggest that the chromophore in Pr adopts the C15-Z,syn conformation.  相似文献   

16.
Vogel R  Siebert F  Mathias G  Tavan P  Fan G  Sheves M 《Biochemistry》2003,42(33):9863-9874
Light-induced isomerization of rhodopsin's retinal chromophore to the activating all-trans geometry initializes the formation of the active receptor state, Meta II. In the absence of peripheral regulatory proteins, the activity of Meta II is switched off spontaneously by two independent pathways: either by hydrolysis of the retinal Schiff base and dissociation of the light receptor into apoprotein opsin plus free retinal or by formation of Meta III, an inactive species with intact retinal protonated Schiff base absorbing at 470 nm. By FTIR spectroscopy on rhodopsin reconstituted with isotopically labeled chromophores in combination with quantum mechanical DFT calculations, we show that the deactivating step during formation of Meta III involves a thermal isomerization of the chromophore C[double bond]N, such that the chromophore in Meta III is all-trans-15-syn. This isomerization step is catalyzed by the protein environment and proceeds via Meta I, as suggested by its dependence on pH and on properties of the lipid/detergent environment of the protein. In the long term, Meta III decays likewise to opsin and free retinal by slow hydrolysis of the Schiff base.  相似文献   

17.
Magic angle sample spinning (MASS) 13C NMR spectra have been obtained of bovine rhodopsin regenerated with retinal prosthetic groups isotopically enriched with 13C at C-5 and C-14. In order to observe the 13C retinal chromophore resonances, it was necessary to employ low temperatures (-15-----35 degrees C) to restrict rotational diffusion of the protein. The isotropic chemical shift and principal values of the chemical shift tensor of the 13C-5 label indicate that the retinal chromophore is in the twisted 6-s-cis conformation in rhodopsin, in contrast to the planar 6-s-trans conformation found in bacteriorhodopsin. The 13C-14 isotropic shift and shift tensor principal values show that the Schiff base C = N bond is anti. Furthermore, the 13C-14 chemical shift (121.2 ppm) is within the range of values (120-123 ppm) exhibited by protonated (C = N anti) Schiff base model compounds, indicating that the C = N linkage is protonated. Our results are discussed with regard to the mechanism of wavelength regulation in rhodopsin.  相似文献   

18.
The visual pigment rhodopsin is characterized by an 11-cis retinal chromophore bound to Lys-296 via a protonated Schiff base. Following light absorption the C(11)=C(12) double bond isomerizes to trans configuration and triggers protein conformational alterations. These alterations lead to the formation of an active intermediate (Meta II), which binds and activates the visual G protein, transducin. We have examined by UV-visible and Fourier transform IR spectroscopy the photochemistry of a rhodopsin analogue with an 11-cis-locked chromophore, where cis to trans isomerization around the C(11)=C(12) double bond is prevented by a 6-member ring structure (Rh(6.10)). Despite this lock, the pigment was found capable of forming an active photoproduct with a characteristic protein conformation similar to that of native Meta II. This intermediate is further characterized by a protonated Schiff base and protonated Glu-113, as well as by its ability to bind a transducin-derived peptide previously shown to interact efficiently with native Meta II. The yield of this active photointermediate is pH-dependent and decreases with increasing pH. This study shows that with the C(11)=C(12) double bond being locked, isomerization around the C(9)=C(10) or the C(13)=C(14) double bonds may well lead to an activation of the receptor. Additionally, prolonged illumination at pH 7.5 produces a new photoproduct absorbing at 385 nm, which, however, does not exhibit the characteristic active protein conformation.  相似文献   

19.
Rhodopsin is the G-protein coupled photoreceptor that initiates the rod phototransduction cascade in the vertebrate retina. Using specific isotope enrichment and magic angle spinning (MAS) NMR, we examine the spatial structure of the C10-C11=C12-C13-C20 motif in the native retinylidene chromophore, its 10-methyl analogue, and the predischarge photoproduct metarhodopsin-I. For the rhodopsin study 11-Z-[10,20-(13)C(2)]- and 11-Z-[11,20-(13)C(2)]-retinal were synthesized and incorporated into bovine opsin while maintaining a natural lipid environment. The ligand is covalently bound to Lys(296) in the photoreceptor. The C10-C20 and C11-C20 distances were measured using a novel 1-D CP/MAS NMR rotational resonance experimental procedure that was specifically developed for the purpose of these measurements [Verdegem, P. J. E., Helmle, M., Lugtenburg, J., and de Groot, H. J. M. (1997) J. Am. Chem. Soc. 119, 169]. We obtain r(10,20) = 0.304 +/- 0.015 nm and r(11,20) = 0.293 +/- 0.015 nm, which confirms that the retinylidene is 11-Z and shows that the C10-C13 unit is conformationally twisted. The corresponding torsional angle is about 44 degrees as indicated by Car-Parrinello modeling studies. To increase the nonplanarity in the chromophore, 11-Z-[10,20-(13)C(2)]-10-methylretinal and 11-Z-[(10-CH(3)), 13-(13)C(2)]-10-methylretinal were prepared and incorporated in opsin. For the resulting analogue pigment r(10,20) = 0.347 +/- 0.015 nm and r((10)(-)(CH)()3())(,)(13) = 0.314 +/- 0.015 nm were obtained, consistent with a more distorted chromophore. The analogue data are in agreement with the induced fit principle for the interaction of opsin with modified retinal chromophores. Finally, we determined the intraligand distances r(10,20) and r(11,20) also for the photoproduct metarhodopsin-I, which has a relaxed all-E structure. The results (r(10,20) >/= 0.435 nm and r(11,20) = 0.283 +/- 0.015 nm) fully agree with such a relaxed all-E structure, which further validates the 1-D rotational resonance technique for measuring intraligand distances and probing ligand structure. As far as we are aware, these results represent the first highly precise distance determinations in a ligand at the active site of a membrane protein. Overall, the MAS NMR data indicate a tight binding pocket, well defined to bind specifically only one enantiomer out of four possibilities and providing a steric complement to the chromophore in an ultrafast ( approximately 200 fs) isomerization process.  相似文献   

20.
The strain CC-2359 of the unicellular eukaryotic alga Chlamydomonas reinhardtii originally described as a low pigmentation mutant is found to be devoid of photophobic stop responses to photostimuli over a wide range of light intensities. Photophobic responses of the mutant are restored by exogenous addition of all-trans retinal. We have combined computer-based cell-tracking and motion analysis with retinal isomer and retinal analog reconstitution of CC-2359 to investigate properties of the photophobic response receptor. Most rapid and most complete reconstitution is obtained with all-trans retinal compared to 13-cis, 11-cis, and 9-cis retinal. An analog locked by a carbon bridge in a 6-s-trans conformation reconstitutes whereas the corresponding 6-s-cis locked analog does not. Retinal analogs prevented from isomerization around the 13-14 double bond by a five-membered ring in the polyene chain (locked in either the 13-trans or 13-cis configuration) do not restore the response, but enter the chromophore binding pocket as evidenced by their inhibition of all-trans retinal regeneration of the response. Results of competition experiments between all-trans and each of the 13-locked analogs fit a model in which each chromophore exhibits reversible binding to the photoreceptor apoprotein. A competitive inhibition scheme closely fits the data and permits calculation of apparent dissociation constants for the in vivo reconstitution process of 2.5 x 10(-11) M, 5.2 x 10(-10) M, and 5.4 x 10(-9) M, for all-trans, 13-trans-locked and 13-cis-locked analogs, respectively. The chromophore requirement for the trans configuration and 6-s-trans conformation, and the lack of signaling function from analogs locked at the 13 position, are characteristic of archaebacterial rhodopsins, rather than the previously studied eukaryotic rhodopsins (i.e., visual pigments).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号