首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The most commonly used expression platform for production of recombinant proteins in the methylotrophic yeast Hansenula polymorpha relies on the strong and strictly regulated promoter from the gene encoding peroxisomal enzyme alcohol (or methanol) oxidase (P(MOX)). Expression from P(MOX) is induced by methanol and is partially derepressed in glycerol or xylose medium, whereas in the presence of hexoses, disaccharides or ethanol, it is repressed. The need for methanol for maximal induction of gene expression in large-scale fermentation is a significant drawback, as this compound is toxic, flammable, supports a slow growth rate and requires extensive aeration. We isolated H. polymorpha mutants deficient in glucose repression of P(MOX) due to an impaired HpGCR1 gene, and other yet unidentified secondary mutations. The mutants exhibited pronounced defects in P(MOX) regulation only by hexoses and xylose, but not by disaccharides or ethanol. With one of these mutant strains as hosts, we developed a modified two-carbon source mode expression platform that utilizes convenient sugar substrates for growth (sucrose) and induction of recombinant protein expression (glucose or xylose). We demonstrate efficient regulatable by sugar carbon sources expression of three recombinant proteins: a secreted glucose oxidase from the fungus Aspergillus niger, a secreted mini pro-insulin, and an intracellular hepatitis B virus surface antigen in these mutant hosts. The modified expression platform preserves the favorable regulatable nature of P(MOX) without methanol, making a convenient alternative to the traditional system.  相似文献   

4.
We have introduced into Hansenula polymorpha an extra copy of its alcohol oxidase gene. This gene which is under the control of the Saccharomyces cerevisiae phosphoglycerate kinase promoter is integrated in a chromosome different from the one containing the endogenous gene. Cells with the extra alcohol oxidase gene, grown on glucose or ethanol as the sole carbon source, express enzymatically active alcohol oxidase. However, other enzymes characteristic for methylotrophic growth conditions are absent or present at low levels. Most of the alcohol oxidase occurs in the octameric state and immuno- and cytochemical evidence shows that it is located in a single enlarged peroxisome per cell. Such peroxisomes show crystalloid inclusions which are lacking in the peroxisomes present in glucose grown control cells. Our results suggest that import into peroxisomes of H. polymorpha, assembly and activation of alcohol oxidase is not conditionally dependent on adaptation to methylotrophic growth conditions and that proliferation of peroxisomes is a well-programmed process that is not triggered solely by overproduction of a peroxisomal protein.  相似文献   

5.
汉森酵母表达载体的构建和人血管生成抑制素基因的表达   总被引:1,自引:0,他引:1  
汉森酵母(H.polymorpha)是一类能以甲醇为唯一碳源和能源的甲基营养酵母,具有高表达外源基因、易于高密度发酵和产业化的特点。应用PCR技术扩增汉森酵母甲醇氧化酶(Methanol oxidase MOX)基因启动子和转录终止序列,并与汉森酵母Leu基因(Hpleu2)和人血管生成抑制素基因一起重组进大肠杆菌质粒pSP72,构建了整合型表达载体pSMA17,采用LiAc法将pSMA17转入汉森酵母A16(leu),筛选出阳性转化子H.polymorpha A16(pSMA17)。转化子在YPGE培养基中培养至对数生长后期,用甲醇进行诱导表达。ELISA和SDSPAGE分析结果证明人血管生成抑制素已获表达,表达产物分泌至培养基中。Western blot结果显示重组的人血管生成抑制素能与抗人纤溶酶原抗血清特异结合,具有免疫原性。  相似文献   

6.
Song H  Li Y  Fang W  Geng Y  Wang X  Wang M  Qiu B 《Biotechnology letters》2003,25(23):1999-2006
Four expression vectors based on formate dehydrogenase promoter (FMDp) and methanol oxidase promoter (MOXp) from Hansenula polymorpha were developed to express heterologous genes in Hansenula polymorpha. A secretion signal sequence of the mating factor-alpha from Saccharomyces cerevisiae was inserted in the secretory expression plasmids for efficient secretion. A modified green fluorescent protein (mGFP5) was used as the marker of expression for the first time in H. polymorpha NCYC495 (leu 1.1) to determine the expression ability of these plasmids. The mGFP5 thus expressed retained its biochemical and physiological properties, such as accumulation inside cells and efficient secretion into the culture media. These results indicated that the four integrative vectors are useful expression systems which could be directly applied for production of heterologous proteins of interests in H. polymorpha.  相似文献   

7.
Hansenula polymorpha CBS 4732 was studied during cultivation on methanol and different glucose concentrations. Activities of Cu/Zn and Mn superoxide dismutase, catalase and methanol oxidase were investigated. During cultivation on methanol, increased superoxide dismutase and catalase activities and an induced methanol oxidase were achieved. Transfer of a methanol grown culture to medium with a high glucose concentration caused growth inhibition, low consumption of carbon, nitrogen and phosphate substrates, methanol oxidase inactivation as well as decrease of catalase activity (21.8 +/- 0.61 deltaE240 x min(-1) x mg protein(-1)). At the same time, a high value for superoxide dismutase enzyme was found (42.9 +/- 0.98 U x mg protein(-1), 25% of which was represented by Mn superoxide dismutase and 75% - by the Cu/Zn type). During derepression methanol oxidase was negligible (0.005 +/- 0.0001 U x mg protein(-1)), catalase tended to be the same as in the repressed culture, while superoxide dismutase activity increased considerably (63.67 +/- 1.72 U x mg protein(-1), 69% belonging to the Cu/Zn containing enzyme). Apparently, the cycle of growth inhibition and reactivation of Hansenula polymorpha CBS 4732 cells is strongly connected with the activity of the enzyme superoxide dismutase.  相似文献   

8.
9.
Sequence comparison of Drosophila melanogaster glucose dehydrogenase, Escherichia coli choline dehydrogenase, Aspergillus niger glucose oxidase and Hansenula polymorpha methanol oxidase indicates that these four diverse flavoproteins are homologous, defining a new family of proteins named the GMC oxidoreductases. These enzymes contain a canonical ADP-binding beta alpha beta-fold close to their amino termini as found in other flavoenzymes. This domain is encoded by a single exon of the D. melanogaster glucose dehydrogenase gene.  相似文献   

10.
Comparative proteome analysis of Hansenula polymorpha DL1 and A16   总被引:2,自引:0,他引:2  
Kim YH  Han KY  Lee K  Heo JH  Kang HA  Lee J 《Proteomics》2004,4(7):2005-2013
Proteomic responses of methylotrophic yeasts (Hansenula polymorpha DL1 and A16) to growth medium tuning by carbon source shift (glycerol-->methanol) were monitored and analyzed by two-dimensional gel electrophoresis. Through comparative analyses of two-dimensional gels, intracellular yeast proteins with complex expression patterns were systematically sorted into: (1) proteins that are commonly expressed with comparable high abundance in both strains; (2) strain-specific proteins that are expressed at high level only in a particular strain; (3) strain-specific and methanol-induced proteins that are expressed only in the presence of methanol; and (4) strain-specific and constitutively-expressed proteins that are expressed consistently irrespective of carbon source shift without extreme change in expression level. Among the DL1-specific proteins belonging to group four, the four proteins showing the highest expression levels in the course of the fermentation process were identified as: glucose-6-phosphate dehydrogenase, isocitrate lyase, succinyl-CoA synthetase, and glycerol-3-phosphate dehydrogenase. From these results, it is suggested that DL1 has distinct metabolic characteristics including enhanced metabolic activities both in glycerol uptake and the glyoxylate bypass cycle, as compared to A16. This is likely to explain why the DL1 strain shows a significantly higher rate of glycerol and methanol consumption during the fermentation process. Our systematic approach to the analysis of proteomic responses and the detailed analysis results reported here will be useful to better understand the global physiology of H. polymorpha, as proteome databases for various methylotrophic yeasts are established.  相似文献   

11.
12.
Saccharomyces cerevisiae SU50B and Hansenula polymorpha 8/2, both carrying a multicopy integrated guar alpha-galactosidase, have been cultivated in continuous cultures, using various mixtures of carbon sources and cultivation conditions. Both S. cerevisiae SU50B and H. polymorpha 8/2 are stable and produce high levels of extracellular alpha-galactosidase in continuous cultures for more than 500 h. For these expression systems the strong inducible promoter systems GAL7 and methanol oxidase, respectively, were used. The induction of alpha-galactosidase synthesis by galactose in SU50B is limited by the low galactose uptake. Apart from that, at high dilution rates, the glucose repression is substantial, and a maximal expression level of 28.6 mg of extracellular alpha-galactosidase.g (dry weight) of biomass-1 could be obtained. In H. polymorpha, the induction of alpha-galactosidase synthesis, in addition to methanol oxidase synthesis using formaldehyde, is very effective up to 42 mg of extracellular alpha-galactosidase.g (dry weight) of biomass-1. Productivities in terms of specific production rate enable a good comparison with those of other heterologous expression systems in the literature. The productivities found with S. cerevisiae SU50B and H. polymorpha, 3.25 and 5.5 mg of alpha-galactosidase.g of biomass-1.liter-1.h-1, respectively, rank among the highest reported in the literature. Enzyme production and secretion in H. polymorpha are more complex. A two-peaked optimum is found in enzyme production. No clear explanation of this phenomenon can be given.  相似文献   

13.
Modified methylotrophic yeast Hansenula polymorpha (HP A16) that was obtained by repressing leucine oxotrophic yeast; a wild type of Hansenula polymorpha CB4732 was used in this study. The yeast is grown with methanol, which is used as a sole carbon source, using various methanol concentrations and temperatures, and methanol oxidase (MOX) which is a key enzyme of methanol metabolism; production is maximized. Whole yeast cells were cultivated under optimized inoculation conditions; they were separated into two portions. One portion of these cells was directly used in bioconversion of methanol to formaldehyde. The second portion of the free cells was broken into pieces and a crude enzyme extract was obtained. The MOX enzyme in this extract was purified via salt precipitation, dialysis, and chromatographic methods. The purified MOX enzyme of yeast (HP A16) oxidized the methanol to formaldehyde. Optimization of bioconversion conditions was studied to reach maximum activity of enzyme. The optimum temperature and pH were found to be 35 degrees C and pH 8.0 in boric acid/NaOH buffer, and it was stable over the pH range of 6-9, at the 20 degrees C 15 min. A suitable reaction period was found as 50 min. The enzyme indicated low carbon primary alcohols (C2 to C4), as well as methanol. Initially, MOX activity increased with the increase of methanol concentration, but enzyme activity decreased. The apparent Km and Vmax values for methanol substrate of HP A16 MOX were 0.25 mM and 30 U/mg, respectively. The purified MOX enzyme was applied onto sodium dodecyl sulphate-polyacrylamide gel electrophoresis; molecular weight of the enzyme was calculated to be about 670 kDa. Each MOX enzyme is composed of eight identical subunits, each of whose molecular weight is around 82 kDa and which contain eight moles of FAD as the prosthetic group, and the pI of the natural enzyme is found to be 6.4. The purified MOX enzyme was used in the bioconversion of methanol to formaldehyde as a catalyst; this conversion was compared to the conversion percentages of whole cells in our previous article in terms of catalytic performances.  相似文献   

14.
作为研究甲醇代谢、过氧化物酶体稳态和硝酸盐吸收的模式生物,多形汉逊酵母近年来在基础研究领域日益受到重视。在工程应用领域,利用多形汉逊酵母表达真核外源基因有特殊的优势。譬如容易得到高拷贝,在含油酸的培养条件下能够表达膜蛋白等。已有多种外源蛋白在多形汉逊酵母系统中得到表达。本文综述了多形汉逊酵母的基本生物学性质、基础研究领域概况及其在外源基因表达方面的特点和进展。  相似文献   

15.
16.
We have analyzed the properties of peroxisomal remnants in Hansenula polymorpha pex5 cells. In such cells PTS1 matrix protein import is fully impaired. In H. polymorpha pex5 cells, grown on ethanol/ammonium sulfate, conditions that repressed the PTS2 protein amine oxidase (AMO), peroxisomal structures were below the limit of detection. In methanol/ammonium sulfate-grown cells, normal peroxisomes are absent, but a few small membranous structures were observed that apparently represented peroxisomal ghosts since they contained Pex14p. These structures were the target of a Pex10p.myc fusion protein that was produced in pex5 cells under the control of the homologous alcohol oxidase promoter (strain pex5::P(AOX).PEX10.MYC). Glycerol/methanol/ammonium sulfate-grown cells of this transformant were placed in fresh glucose/methylamine media, conditions that fully repress the synthesis of the Pex10p.myc fusion protein but induce the synthesis of AMO. Two hours after the shift Pex10p.myc-containing structures were detectable that had accumulated newly synthesized AMO protein and which during further cultivation developed in normal peroxisomes. Concurrently, the remaining portion of these structures was rapidly degraded. These findings indicate that peroxisomal remnants in pex5 cells can develop into peroxisomes. Also, as for normal peroxisomes in H. polymorpha, apparently a minor portion of these structures actually take part in the development of these organelles.  相似文献   

17.
Simultaneous utilization of methanol and glucose by Hansenula polymorpha (Torulopsis sp.) MH 26 results in an increase in growth yield of up to 18% in dependence of the mixing proportion. The distribution of carbon from 14C-methanol into biomass and carbon dioxide was investigated. The distribution pattern was strongly influenced by the mixing proportion showing that methanol plays an increasing role as an energy donor as the glucose content in the mixture increased. Due to these data and verified by theoretical considerations the effect on growth yield was discussed to be caused by an interconnection in the conversion of the individual substrates. This is attributed to glucose delivering the acceptor for C1-assimilation and resulting in a more efficient utilization of glucose carbon on the one as well as the energy content of methanol on the other hand.  相似文献   

18.
We have studied the synthesis and subcellular location of peroxisomal membrane proteins (PMPs) in cells of a peroxisome-deficient (per) mutant of the methylotrophic yeast Hansenula polymorpha. Western blot analysis of methanol-induced cells of the per mutant, which had been growing in a continuous culture on a glucose/methanol mixture, indicated that various PMPs were normally synthesized. As in wild type (WT) cells, the levels of PMP synthesis appeared to be dependent on specific cultivation conditions, e.g. the carbon source used for growth. In contrast to WT controls, PMPs in methanol-induced per mutants were not subject to proteolytic degradation. Biochemical and immuno(cyto)chemical studies suggested that the PMPs in methanol-induced per cells were located in small proteinaceous aggregates, separated from peroxisomal matrix proteins that were also present in the cytosol. Vesicular membranous structures, resembling the morphology of intact peroxisomes, were never detected irrespective of the growth conditions employed.  相似文献   

19.
The Delta(6)-desaturase gene isoform II involved in the formation of gamma-linolenic acid (GLA) was identified from Mucor rouxii. To study the possibility of alteration of the synthetic pathway of essential fatty acids in the methylotrophic yeast, Hansenula polymorpha, the cloned gene of M. rouxii under the control of the methanol oxidase (MOX) promoter of H. polymorpha, was used for genetic modification of this yeast. Changes in flux through the n-3 and n-6 pathways in the transgenic yeast were observed. The proportion of GLA varied dramatically depending on the growth temperature and media composition. This can be explained by the effects of either substrate availability or enzymatic activity. In addition to the potential application for manipulating the fatty acid profile, this study provides an attractive model system of H. polymorpha for investigating the deviation of fatty acid metabolism in eukaryotes.  相似文献   

20.
The advantages of Hansenula polymorpha as a new yeast expression system are discussed in terms of the powerful and regulatable methanol oxidase promoter and the organism's ability to grow on cheap carbon sources. The development of techniques for conventional genetic analysis is described. A total of 218 mutants have been assigned to 62 complementation groups, three genes have been found to be linked forming the first linkage group in this organism. Methods for molecular transformation have been developed allowing the expression of heterologous genes. The disruptive integration and expression of the neomycin phosphotransferase is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号