首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light-mediated conformational changes in highly purified 124-kDa phytochrome preparations from etiolated oat seedlings have been identified by steric exclusion high performance liquid chromatography and limited proteolytic studies. Steric exclusion high performance liquid chromatography studies of oat and rye phytochromes show photoreversible changes in retention times, with the red absorbing form of phytochrome (Pr form) eluting later than the far red absorbing form of phytochrome produced by saturating red light illumination of Pr (Pfr form) in a variety of different mobile phase buffers. Molecular mass calibration with globular protein standards in Tris-glycol buffers provides estimates of 318-349 and 363-366 kDa for the molecular sizes of the Pr and Pfr forms, respectively. These analyses support earlier studies that phytochrome is a nonglobular homodimer of 124-kDa subunits in vitro. Limited proteolytic dissection of phytochrome in nondenaturing buffers with seven different endoproteases provides evidence for two "operational" domains within the 124-kDa subunit with molecular mass values of 69-72 and 52-55 kDa. The larger 69-72-kDa domain contains the site for the chromophore attachment as shown by gel electrophoresis derived enzyme-linked immunosorbent assay utilizing site-directed rabbit antiserum to a synthetic undecapeptide which is homologous with the chromophore binding site on oat phytochrome. This chromophore domain exhibits a compact structure, resistant to further proteolysis except near its N terminus. By contrast, the 52-55-kDa nonchromophore domain contains multiple sites for further proteolytic cleavage as revealed by rapid cleavage to smaller polypeptide fragments. Detailed kinetic analyses of the limited proteolytic cleavage of phytochrome with four endoproteases, subtilisin BPN', thermolysin, trypsin, and clostripain, has mapped specific regions within the 124-kDa subunit that participate in light-induced conformational changes. These include a 4-10-kDa region near the N terminus of the chromophore binding domain and at least two regions within the nonchromophore domain. A comprehensive peptide map of the oat phytochrome subunit is presented, which incorporates the results of these proteolytic studies with the recent, yet unpublished sequence analyses of Avena phytochrome cDNA clones which show the N-terminal localization of the chromophore binding site (Hershey, H. P., Colbert, J. T., Lissemore, J. L., Barker, R. F., and Quail, P. H. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 2332-2336).  相似文献   

2.
Structure and expression of a maize phytochrome-encoding gene   总被引:12,自引:0,他引:12  
A H Christensen  P H Quail 《Gene》1989,85(2):381-390
  相似文献   

3.
4.
Molecular biology of phytochrome   总被引:5,自引:5,他引:0  
  相似文献   

5.
Cloned cDNA and genomic sequences have been analyzed to deduce the amino acid sequence of phytochrome from etiolated Avena. Restriction endonuclease site polymorphism between clones indicates that at least four phytochrome genes are expressed in this tissue. Sequence analysis of two complete and one partial coding region shows approximately 98% homology at both the nucleotide and amino acid levels, with the majority of amino acid changes being conservative. High sequence homology is also found in the 5'-untranslated region but significant divergence occurs in the 3'-untranslated region. The phytochrome polypeptides are 1128 amino acid residues long corresponding to a molecular mass of 125 kdaltons. The known protein sequence at the chromophore attachment site occurs only once in the polypeptide, establishing that phytochrome has a single chromophore per monomer covalently linked to Cys-321. Computer analyses of the amino acid sequences have provided predictions regarding a number of structural features of the phytochrome molecule.  相似文献   

6.
N Mori  J Singer-Sam  C Y Lee  A D Riggs 《Gene》1986,45(3):275-280
A clone containing cDNA for X chromosome-linked phosphoglycerate kinase (PGK-1) was isolated from a mouse myeloma cDNA library. The nucleotide (nt) sequence of the cDNA has been determined, and the amino acid (aa) sequence of the enzyme thereby deduced. At the nt level, the coding region of mouse PGK cDNA has 93% homology with human X-linked cDNA and 60% homology with the yeast gene. Mouse PGK-1 protein contains 416 aa and is 98%, 96% and 64% homologous with human, horse, and yeast enzyme sequences, respectively.  相似文献   

7.
8.
Abstract. Avena sativa L. (oat) seedings were grown 4 d in continuous white light followed by 3 d in darkness. Probes derived from an oat phytochrome cDNA clone (pAP 3.2) were used in slot blot analyses to measure the abundance of phytochrome mRNA in the distinct etiolated and green portions of the leaves produced by these seedlings. Both the green and etiolated portions accumulated phytochrome mRNA to a level of about 85% of the etiolated seedling level. Subsequent experiments with similar seedlings showed that both the green and etiolated portions were capable of inducing a dramatic decline in phytochrome mRNA abundance in response to a saturating red light pulse. Despite the ability of green portions of oat leaves to accumulate phytochrome mRNA and to down-regulate phytochrome mRNA abundance in response to light, no substantial variation in phytochrome mRNA abundance was observed in green oat seedlings maintained on a 12-h day/12-h night cycle. In the same oat seedlings, the abundance of chlorophyll a/b binding protein mRNA fluctuated dramatically during the day/night cycle.  相似文献   

9.
A method of semiempirical identification of structural domains is proposed. The procedure is based on the comparison of amino acid sequences in groups of homologous proteins. This approach was tested using 32 known protein sequences from different cytochromeb 5, cytochromec, lysozyme, hemoglobin, and myoglobin proteins. The method presented was able to identify all structural domains of these reference proteins. A consensus secondary structure provided information on structural content of these domains predicting correctly 21 of 23 (91%) of -helices. We applied this method to six homologous phytochrome sequences fromAvena, Arabadopsis, Cucurbita, Maize, Oryza, andPisum. Some of the identified domains can be assigned to the known tertiary structure categories. For example, an / domain is localized in the region known to stabilize the phytochrome chromophore in the red light absorbing form (Pr). One -helical and one / domains are localized in regions important for the chromophore stabilization in the far-red absorbing form (Pfr). From an analysis of noncovalent interaction patterns in another domain it is proposed that a phytochrome dimer contact involves two segments localized between residues 730 and 821 (using numbering of aligned sequences). Also, a possible antiparallel -sheet structure of this region has been suggested. According to this model, the long axis of the interacting structures is perpendicular to a twofold symmetry axis of the phytochrome dimer.  相似文献   

10.
A novel cDNA sequence homologous to a phytochrome B (phyB) gene that was isolated in a library from tobacco tissue has been used in an Escherichia coli expression system to raise anti-phytochrome B (anti-PHYB) polypeptide-specific monoclonal antibodies. The specificity of these antibodies has been tested by cross-reactivity against purified pea light-labile type 1 and light-stable type 2 phytochromes, with some antibodies reacting with the type 2 and none with the type 1 phytochromes. One such antibody, monoclonal mAT1, has been employed to analyze the phytochrome molecular species present in a photomorphogenic long hypocotyl (lh) mutant of cucumber. The results indicated that the mutant contains wild-type levels of the light-labile type 1 phytochrome polypeptide (PHYA), which has an apparent molecular mass of approximately 120 kD, but shows less than 1% (detection limit) of a light-stable polypeptide recognized by mAT1 in wild-type seedlings. This protein, not detectable in the lh mutant, has the properties of light-stable type 2 phytochrome, has an apparent molecular mass of 116 to 117 kD, and remains at constant levels under continuous low-fluence-rate red light. Therefore, we conclude that the lh mutant lacks at least one type 2 phytochrome-like polypeptide, most probably a phyB gene product. The correlation between the lack of this protein and the deficiency or absence of physiological responses to a light-stable phytochrome species in this mutant helps to identify the physiological roles played by the products of different subfamilies within the phytochrome gene family.  相似文献   

11.
《The Journal of cell biology》1986,103(6):2541-2550
Using monoclonal antibodies to the plant photoreceptor, phytochrome, we have investigated by immunogold electron microscopy the rapid, red light-induced, intracellular redistribution (termed "sequestering") of phytochrome in dark-grown Avena coleoptiles. Pre-embedding immunolabeling of 5-micron-thick cryosections reveals that sequestered phytochrome is associated with numerous, discrete structures of similar morphology. Specific labeling of these structures was also achieved by post-embedding ("on-grid") immunostaining of LR-White-embedded tissue, regardless of whether the tissue had been fixed chemically or by freeze substitution. The phytochrome-associated structures are globular to oval in shape, 200-400 nm in size, and are composed of amorphous, granular material. No morphologically identifiable membranes are present either surrounding or within these structures, which are often present as apparent aggregates that approach several micrometers in size. An immunogold labeling procedure has also been developed to identify the particulate, subcellular component with which phytochrome is associated in vitro as a consequence of irradiation of Avena coleoptiles before their homogenization. Structures with appearance similar to those identified in situ are the only components of the pelletable material that are specifically labeled with gold. We conclude that the association of phytochrome with these structures in Avena represents the underlying molecular event that ultimately is expressed both as red light-induced sequestering in vivo and enhanced pelletability of phytochrome detected in vitro.  相似文献   

12.
Carp growth hormone: molecular cloning and sequencing of cDNA   总被引:5,自引:0,他引:5  
Y Koren  S Sarid  R Ber  V Daniel 《Gene》1989,77(2):309-315
cDNA clones of the fish Cyprinus carpio growth hormone (GH) mRNA have been isolated from a cDNA library prepared from carp pituitary gland poly(A)+RNA. The nucleotide sequence of one of the carp GH cDNA clones containing an insert of 1164 nucleotides (nt) was determined. The cDNA sequence was found to encode a polypeptide of 210 amino acids (aa) including a signal peptide of 22 aa and to contain 5' and 3' untranslated regions of the mRNA of 36 and 498 nt, respectively. The carp GH presents a 63% amino acid sequence homology with the salmon GH, has structural features common with other GH polypeptides of mammalian or avian origin and contains domains of conserved sequence near the N- and C-terminal regions. Southern blot hybridization of carp genomic DNA with GH cDNA probes shows the presence of at least two GH-coding sequences in the fish genome.  相似文献   

13.
Sucrase-isomaltase (SI) has been widely used as a marker enzyme to study cellular differentiation in the small intestine. We isolated a 6.1-kb SI cDNA clone (GC1.4) from a size-fractionated cDNA library from rat intestine. Sequencing of this cDNA clone showed 6066 nucleotides (nt) with an open reading frame (ORF) of 1841 amino acids (aa). The nt sequence correctly predicts several known aa stretches in the protein. The deduced aa sequence showed 78 and 75% overall identity with the rabbit and human SI, respectively. At the active sites of both S and I, the rat nt sequence encodes stretches of 14 and 16 aa, respectively, which show 100% identity to rabbit and human SI. In the region immediately beyond the transmembrane domain, the rat sequence encodes an extra 10 aa, as compared to rabbit and human. This 10-aa insertion consists almost entirely of Pro, Ser and Thr, and may be responsible for additional 0-glycosylations of rat SI. The cDNA contains a 3'-UTR (untranslated region) of 499 nt with polyadenylation signal sequence and a poly(A) tract. The ATG start codon was found 41 nt downstream from the 5' end of the cDNA. Primer extension experiments showed the cap site to be 61 nt upstream from the start codon. The results indicate that our cDNA clone lacks only 20 nt in the 5'-UTR. Given that this cDNA encodes the entire coding region of SI, it should be useful in elucidating the regulatory mechanisms of SI biosynthesis, localization and targeting during rat intestinal development and differentiation.  相似文献   

14.
A single polypeptide is immunospecifically precipitated by monospecific antiphytochrome from the total translation products of both wheat-germ and rabbit-reticulocyte cell-free protein synthesizing systems programmed with oat (Avena sativa L.) poly(A) RNA. The mobility of this polypeptide is slightly lower on sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis than that of immunoaffinity-purified, 118 kdalton phytochrome and corresponds to an apparent molecular weight of 124 kdalton. Evidence against the possibility that this mobility difference results from intracellular processing of the 124-kdalton protein is provided by extraction of freeze-dried tissue directly into boiling SDS-containing buffer. This procedure yields a phytochrome species with a mobility on SDS polyacrylamide gel electrophoresis indistinguishable from that of the in-vitro translation product. Together the data indicate that the phytochrome polypeptide is synthesized in its mature form in the cell but is subject to modification to a form with lower apparent molecular weight during immunopurification.Abbreviations IgG immunoglobulin G - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

15.
Antiserum was prepared against proteolytically undegraded phytochrome obtained from etiolated zucchini squash (Cucurbita pepo L., cv. Black Beauty). The antiserum was prepared by injecting into a rabbit immunoprecipitates between zucchini phytochrome and specific antiserum against undegraded oat (Avena sativa L., cv. Garry) phytochrome. Specific antiphytochrome immunoglobulins were purified from this crude serum by an affinity column consisting of conventionally purified undegraded pea phytochrome covalently linked to cyanogen bromide-activated agarose. These purified immunoglobulins were also linked to cyanogen bromide-activated agarose and were used to immunopurify zucchini, pea (Pisum sativum L., cv. Alaska), and lettuce (Lactuca sativa L., cv. Grand Rapids) phytochrome. All three dicotyledonous phytochromes exhibited a monomer size near 120,000 daltons by sodium dodecyl sulfate, polyacrylamide gel electrophoresis. Absorbance spectra of immunopurified zucchini phytochrome indicated that the ratio of visible to ultraviolet absorbance for purified zucchini phytochrome is lower than that observed for oat phytochrome. The isoelectric point of zucchini phytochrome, which was observed to be heterogeneous by this criterion, was found to be in the range of 6.5 to 7.0, higher than that observed for oat phytochrome. The electrophoretic mobility of zucchini phytochrome was found to be similar to that observed for oat and pea phytochrome under conditions that were nondenaturing and did not involve any molecular sieving effect. The amino acid analysis of zucchini phytochrome is similar to that reported previously for oat and rye (Secale cereale L., cv. Balbo) phytochrome.  相似文献   

16.
《Gene》1997,187(2):259-266
In the course of the Schizosaccharomyces pombe cDNA project, we succeeded in cloning all the genes encoding translation elongation factors EF-1α, EF-1β, EF-1γ, EF-2 and EF-3. With the exception of the EF-1γ gene, the nucleotide (nt) sequence of S. pombe elongation factors has not been previously reported. For EF-1α, we found three genes whose amino acid (aa) sequences are quite homologous each other (99.5%), but whose 3′ untranslated regions (UTRs) are completely different. Southern blot indicated that those three EF-1α genes are located at different loci. Northern analysis indicated that one of three EF-1α genes was inducible with UV-irradiation, while the level of expression for another of three EF-1α genes was repressed by UV and heat-shock (HS) treatments. The aa sequence predicted from the nt sequence of the S. pombe EF-1β cDNA clone covered almost all the coding sequence (CDS) of EF-1β except the first methionine which has 55.4% identity with that of S. cerevisiae. We also identified two copies of S. pombe EF-2 genes. Their aa sequences deduced from nt sequences are identical (100%), but they have different 3′ UTRs. The location of these two EF-2 genes in different loci was proved by Southern analysis. The S. pombe EF-3 cDNA clone encoded only a third of the CDS from the C-terminal and its deduced aa sequence has a 76% identity with those of other yeasts and fungi.  相似文献   

17.
Nine monoclonal antibodies to pea (Pisum sativum L.) and 16 to oat (Avena sativa L.) phytochrome are characterized by enzyme-linked immunosorbent assay against phytochrome from six different sources: pea, zucchini (Cucurbita pepo L.), lettuce (Lactuca sativa L.), oat, rye (Secale cereale L.), and barley (Hordeum vulgare L.). All antibodies were raised against phytochrome with a monomer size near 120,000 daltons. Nevertheless, none of them discriminated qualitatively between 118/114-kilodalton oat phytochrome and a photoreversible, 60-kilodalton proteolytic degradation product derived from it. In addition, none of the 23 antibodies tested discriminated substantially between phytochrome—red-absorbing form and phytochrome—far red-absorbing form. Two antibodies to pea and six to oat phytochrome also bound strongly to phytochrome from the other species, even though these two plants are evolutionarily widely divergent. Of these eight antibodies, two bound significantly to all of the six phytochrome preparations tested, indicating that these two may recognize highly conserved regions of the chromoprotein. Since the molecular function of phytochrome is unknown, these two antibodies may serve as unique probes for regions of this pigment that are important to its mode of action.  相似文献   

18.
A cDNA clone encoding porcine α-lactalbumin (αLA) was isolated and sequenced. The longest clone was 688 nucleotides (nt) long and encoded a preprotein of 141 amino acids (aa) including a leader peptide of 19 aa. The porcine cDNA exhibited a nt similarity of between 72.2%–83.5% to other αLA cDNAs and an aa similarity of between 50.8%–85.2% with other αLA aa sequences. The derived aa sequence varied at three positions from a previously reported sequence for porcine αLA obtained by direct aa sequencing.  相似文献   

19.
G-proteins in etiolated Avena seedlings. Possible phytochrome regulation   总被引:9,自引:0,他引:9  
L C Romero  D Sommer  C Gotor  P S Song 《FEBS letters》1991,282(2):341-346
The molecular mechanism of light signal transduction in plants mediated by the photosensor phytochrome is not well understood. The possibility that phytochrome initiates the signal transduction chain by modulating a G-protein-like receptor is examined in the present work. Etiolated Avena seedlings contain G-proteins as examined in terms of the binding of GTP as well as by cross-reaction with mammalian G-protein antibodies. The binding of GTP was regulated in vivo by red/far-red light. The possible involvement of G-proteins in the phytochrome-mediated signal transduction in etiolated Avena seedlings has been implicated from the study of the light regulated expression of the Cab and phy genes.  相似文献   

20.
Seven monoclonal antibodies (MAbs) have been prepared to phytochrome from green oat (Avena sativa L. cv. Garry) leaves. One of these MAbs (GO-1) cross-reacts with apoprotein of the phytochrome that is most abundant in etiolated oat shoots as assessed by immunoblot assay of fusion proteins expressed in Escherichia coli. The epitope for this MAb is located between amino acids 618 and 686 in the primary sequence of type 3 phytochrome (Hershey et al. 1985, Nucleic Acids Res. 13, 8543–8559), which is one of the predominant phytochromes in etiolated oats. Three other MAbs (GO-4, GO-5, GO-6) immunoprecipitate phytochrome isolated from green oat leaves, as evaluated by photoreversibility assay. GO-1, GO-4, GO-5 and GO-6 are therefore directed to phytochrome. While evidence obtained with the other three MAbs (GO-2, GO-7, GO-8) strongly indicates that they are also directed to phytochrome, this evidence is not as rigorous. Recognition of antigen by any of these seven MAbs is not significantly reduced by periodate oxidation, indicating that their epitopes probably do not include carbohydrate. All but GO-1 bind either very poorly or not at all the phytochrome that is abundant in etiolated oat shoots. These data reinforce earlier observations made with antibodies directed to phytochrome from etiolated oats, indicating (1) that the phytochromes that predominate in etiolated and green oats differ immunochemically and (2) that phytochrome preparations from green oat leaves contain very little of the phytochrome that is abundant in etiolated shoots. An hypothesis that these two immunochemically distinct phytochromes form heterodimers in vitroAbbreviations Da Dalton - DEAE diethylaminoethyl - ELISA enzyme-linked immunosorbent assay - HA hydroxyapatite - Ig immunoglobulin - MAb monoclonal antibody - SDS sodium dodecyl sulfate is supported by comparison of immunoblot data obtained with conventionally purified phytochrome from etiolated oats to that expressed as fusion protein in E. coli. This research was supported by the U.S. Department of Energy (contract DE-AC-09-81SR10925 to L.H.P.). We thank Dr. Lyle Crossland and Ms. Sue Kadwell for their assistance in the construction of the cDNA clones, and Dr. Gyorgy Bisztray for providing us with clone pCBP3712. Dr. Phillip Evans and Dr. Russell Malmberg kindly provided MAbs 4F3, 6F12 and 8C10, as well as a corresponding antigen preparation. The excellent technical assistance of Mrs. Donna Tucker and Mrs. Danielle Neal is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号