首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.  相似文献   

3.
聚腺苷二磷酸-核糖聚合酶1(poly ADP-ribose polymerase-1,PARP1)是细胞中重要的修饰酶,其最广为人知的作用是通过自身PAR修饰,募集以XRCC1为首的多种DNA损伤修复效应蛋白质,参与DNA单、双链损伤修复。PARP1还能通过促进复制叉停滞与核小体解聚,为DNA损伤修复提供有利条件,维持基因组稳定性。近年来,除DNA损伤修复方面的作用,还发现PARP1能影响细胞凋亡、自噬与炎症通路,与神经退行性疾病的发生发展密切相关。而PARP抑制剂(PARP inhibitor,PARPi)是一种靶向PARP1,与细胞同源重组(homologous recombination,HR)缺陷表型共同作用,产生合成致死效应的抗肿瘤药物。该药物可捕获PARP1并抑制其活性,一方面直接干扰PARP1参与的DNA损伤修复通路,另一方面也抑制了PARP1介导的DNA损伤修复通路选择和复制叉停滞,使细胞基因组不稳定。然而,在临床治疗中常发现肿瘤细胞对PARPi不敏感。肿瘤细胞对PARPi耐药与自身基因突变高度相关,这些基因分别作用于细胞HR修复途径、PARP1循环途径、复制叉稳定性和药物主动外排等方面,在耐药肿瘤患者中确定具体的突变位点,将为临床治疗提供帮助。本文旨在对PARP1的功能作一综述,并重点介绍PARPi的作用机制和与肿瘤耐药相关的突变基因及其耐药机制,以期加深对细胞中PARP1介导的DNA损伤修复通路的认识,并为将来的临床治疗提供新思路。  相似文献   

4.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

5.
Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations. [BMB Reports 2014; 47(6): 299-310]  相似文献   

6.
The Origin Recognition Complex (ORC) is a critical component of replication initiation. We have previously reported generation of an Orc2 hypomorph cell line (Delta/-) that expresses very low levels of Orc2 but is viable. We have shown here that Chk2 is phosphorylated, suggesting that DNA damage checkpoint pathways are activated. p53 was inactivated during the derivation of the Orc2 hypomorphic cell lines, accounting for their survival despite active Chk2. These cells also show a defect in the G1 to S-phase transition. Cdk2 kinase activation in G1 is decreased due to decreased Cyclin E levels, preventing progression into S-phase. Molecular combing of bromodeoxyuridine-labeled DNA revealed that once the Orc2 hypomorphic cells enter S-phase, fork density and fork progression are approximately comparable with wild type cells. Therefore, the low level of Orc2 hinders normal cell cycle progression by delaying the activation of G1 cyclin-dependent kinases. The results suggest that hypomorphic mutations in initiation factor genes may be particularly deleterious in cancers with mutant p53 or increased activity of Cyclin E/Cdk2.  相似文献   

7.
Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.  相似文献   

8.
Fanconi anemia (FA) is a rare hereditary disorder caused by mutations in any one of the FANC genes. FA cells are mainly characterized by extreme hypersensitivity to interstrand crosslink (ICL) agents. Additionally, the FA proteins play a crucial role in concert with homologous recombination (HR) factors to protect stalled replication forks. Here, we report that the 5-methyl-2’-deoxycytidine (5mdC) demethylation (pathway) intermediate 5-hydroxymethyl-2’-deoxycytidine (5hmdC) and its deamination product 5-hydroxymethyl-2’-deoxyuridine (5hmdU) elicit a DNA damage response, chromosome aberrations, replication fork impairment and cell viability loss in the absence of FANCD2. Interestingly, replication fork instability by 5hmdC or 5hmdU was associated to the presence of Poly(ADP-ribose) polymerase 1 (PARP1) on chromatin, being both phenotypes exacerbated by olaparib treatment. Remarkably, Parp1−/− cells did not show any replication fork defects or sensitivity to 5hmdC or 5hmdU, suggesting that retained PARP1 at base excision repair (BER) intermediates accounts for the observed replication fork defects upon 5hmdC or 5hmdU incorporation in the absence of FANCD2. We therefore conclude that 5hmdC is deaminated in vivo to 5hmdU, whose fixation by PARP1 during BER, hinders replication fork progression and contributes to genomic instability in FA cells.Subject terms: DNA damage and repair, DNA replication  相似文献   

9.
To safeguard genetic integrity, cells have evolved an accurate but not failsafe mechanism of DNA replication. Not all DNA sequences tolerate DNA replication equally well [1]. Also, genomic regions that impose structural barriers to the DNA replication fork are a potential source of genetic instability [2, 3]. Here, we demonstrate that G4 DNA-a sequence motif that folds into quadruplex structures in vitro [4, 5]-is highly mutagenic in vivo and is removed from genomes that lack dog-1, the C. elegans ortholog of mammalian FANCJ [6, 7], which is mutated in Fanconi anemia patients [8-11]. We show that sequences that match the G4 DNA signature G3-5N1-3G3-5N1-3G3-5N1-3G3-5 are deleted in germ and somatic tissues of dog-1 animals. Unbiased aCGH analyses of dog-1 genomes that were allowed to accumulate mutations in >100 replication cycles indicate that deletions are found exclusively at G4 DNA; deletion frequencies can reach 4% per site per animal generation. We found that deletion sizes fall short of Okazaki fragment lengths [12], and no significant microhomology was observed at deletion junctions. The existence of 376,000 potentially mutagenic G4 DNA sites in the human genome could have major implications for the etiology of hereditary FancJ and nonhereditary cancers.  相似文献   

10.
The yeast RAD27 gene encodes a functional homolog of the mammalian FEN1 protein, a structure-specific endo/exonuclease which plays an important role in DNA replication and repair. Previous genetic interaction studies, including a synthetic genetic array (SGA) analysis, showed that the survival of rad27Delta cells requires several DNA metabolic processes, in particular those mediated by all members of the Rad52-dependent recombinational repair pathway. Here, we report the results of our SGA analysis of the collection of non-essential yeast genes against the rad27Delta mutation, which resulted in the identification of a novel synthetic lethal interaction conferred by mutations affecting the Nup84 nuclear pore subcomplex (nup133Delta, nup120Delta and nup84Delta). Additional screens showed that all Rad52 group genes are required for the survival of the nup133Delta and nup120Delta mutants, which are defective in nuclear pore distribution and mRNA export, but not of the nup133DeltaN mutant, which is solely defective in pore distribution. This requirement for the DNA double-strand break (DSB) repair pathway is consistent with the observation that, like rad27Delta, the nup133Delta, nup120Delta and nup84Delta mutants are sensitive to methyl methanesulfonate (MMS). Furthermore, nup133Delta cells exhibit an increased number of spontaneous DNA repair foci containing Rad52. Altogether, these data suggest that the pathological interactions between the rad27Delta and specific nupDelta mutations result from the accumulation of unrepaired DNA damages.  相似文献   

11.
Analysis of genetic interactions has been extensively exploited to study gene functions and to dissect pathway structures. One such genetic interaction is synthetic lethality, in which the combination of two non-lethal mutations leads to loss of organism viability. We have developed a dSLAM (heterozygote diploid-based synthetic lethality analysis with microarrays) technology that effectively studies synthetic lethality interactions on a genome-wide scale in the budding yeast Saccharomyces cerevisiae. Typically, a query mutation is introduced en masse into a population of approximately 6000 haploid-convertible heterozygote diploid Yeast Knockout (YKO) mutants via integrative transformation. Haploid pools of single and double mutants are freshly generated from the resultant heterozygote diploid double mutant pool after meiosis and haploid selection and studied for potential growth defects of each double mutant combination by microarray analysis of the "molecular barcodes" representing each YKO. This technology has been effectively adapted to study other types of genome-wide genetic interactions including gene-compound synthetic lethality, secondary mutation suppression, dosage-dependent synthetic lethality and suppression.  相似文献   

12.
Emerin and LEM2 are ubiquitous inner nuclear membrane proteins conserved from humans to Caenorhabditis elegans. Loss of human emerin causes Emery-Dreifuss muscular dystrophy (EDMD). To test the roles of emerin and LEM2 in somatic cells, we used null alleles of both genes to generate C. elegans animals that were either hypomorphic (LEM-2-null and heterozygous for Ce-emerin) or null for both proteins. Single-null and hypomorphic animals were viable and fertile. Double-null animals used the maternal pool of Ce-emerin to develop to the larval L2 stage, then arrested. Nondividing somatic cell nuclei appeared normal, whereas dividing cells had abnormal nuclear envelope and chromatin organization and severe defects in postembryonic cell divisions, including the mesodermal lineage. Life span was unaffected by loss of Ce-emerin alone but was significantly reduced in LEM-2-null animals, and double-null animals had an even shorter life span. In addition to striated muscle defects, double-null animals and LEM-2-null animals showed unexpected defects in smooth muscle activity. These findings implicate human LEM2 mutations as a potential cause of EDMD and further suggest human LEM2 mutations might cause distinct disorders of greater severity, since C. elegans lacking only LEM-2 had significantly reduced life span and smooth muscle activity.  相似文献   

13.
Physical and functional interactions define the molecular organization of the cell. Genetic interactions, or epistasis, tend to occur between gene products involved in parallel pathways or interlinked biological processes. High-throughput experimental systems to examine genetic interactions on a genome-wide scale have been devised for Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster, but have not been reported previously for prokaryotes. Here we describe the development of a quantitative screening procedure for monitoring bacterial genetic interactions based on conjugation of Escherichia coli deletion or hypomorphic strains to create double mutants on a genome-wide scale. The patterns of synthetic sickness and synthetic lethality (aggravating genetic interactions) we observed for certain double mutant combinations provided information about functional relationships and redundancy between pathways and enabled us to group bacterial gene products into functional modules.  相似文献   

14.
The Caenorhabditis elegans teneurin ortholog, ten-1, plays an important role in gonad and pharynx development. We found that lack of TEN-1 does not affect germline proliferation but leads to local basement membrane deficiency and early gonad disruption. Teneurin is expressed in the somatic precursor cells of the gonad that appear to be crucial for gonad epithelialization and basement membrane integrity. Ten-1 null mutants also arrest as L1 larvae with malformed pharynges and disorganized pharyngeal basement membranes. The pleiotropic phenotype of ten-1 mutant worms is similar to defects found in basement membrane receptor mutants ina-1 and dgn-1 as well as in the mutants of the extracellular matrix component laminin, epi-1. We show that the ten-1 mutation is synthetic lethal with mutations of genes encoding basement membrane components and receptors due to pharyngeal or hypodermal defects. This indicates that TEN-1 could act redundantly with integrin INA-1, dystroglycan DGN-1, and laminin EPI-1 in C. elegans development. Moreover, ten-1 deletion sensitizes worms to loss of nidogen nid-1 causing a pharynx unattached phenotype in ten-1;nid-1 double mutants. We conclude that TEN-1 is important for basement membrane maintenance and/or adhesion in particular organs and affects the function of somatic gonad precursor cells.  相似文献   

15.
Sister chromatid cohesion is fundamental for the faithful transmission of chromosomes during both meiosis and mitosis. Proteins involved in this process are highly conserved from yeasts to humans. In screenings for sterile animals with abnormal vulval morphology, mutations in the Caenorhabditis elegans evl-14 and scc-3 genes were isolated. Defects in cell divisions were observed in germ line as well as in vulval and somatic gonad lineages. Through positional cloning of these genes, we have shown that EVL-14 and SCC-3 are likely the only C. elegans homologs of the yeast sister chromatid cohesion proteins Pds5 and Scc3, respectively. Both evl-14 and scc-3 mutants displayed defects in the meiotic germ line. In evl-14 mutants, synaptonemal complexes (SCs) were detectable but more than the usual six DAPI (4',6'-diamidino-2-phenylindole)-positive structures were seen at diakinesis, suggesting that EVL-14/PDS-5 is important for the maintenance of sister chromatid cohesion in late prophase. In scc-3 mutant animals, normal SCs were not visible and approximately 24 DAPI-positive structures were seen at diakinesis, indicating that SCC-3 is necessary for sister chromatid cohesion. Immunostaining revealed that localization of REC-8, a homolog of the yeast meiotic cohesin subunit Rec8, to the chromosomes depends on the presence of SCC-3 but not that of EVL-14/PDS-5. scc-3 RNA interference (RNAi)-treated embryos were 100% lethal and displayed defects in cell divisions. evl-14 RNAi caused a range of phenotypes. These results indicate that EVL-14/PDS-5 and SCC-3 have functions in both mitosis and meiosis.  相似文献   

16.
E. S. Kroll  K. M. Hyland  P. Hieter    J. J. Li 《Genetics》1996,143(1):95-102
We have devised a genetic screen, termed synthetic dosage lethality, in which a cloned ``reference' gene is inducibly overexpressed in a set of mutant strains carrying potential ``target' mutations. To test the specificity of the method, two reference genes, CTF13, encoding a centromere binding protein, and ORC6, encoding a subunit of the origin of replication binding complex, were overexpressed in a large collection of mutants defective in either chromosome segregation or replication. CTF13 overexpression caused synthetic dosage lethality in combination with ctf14-42 (cbf2, ndc10), ctf17-61 (chl4), ctf19-58 and ctf19-26. ORC6 overexpression caused synthetic dosage lethality in combination with cdc2-1, cdc6-1, cdc14-1, cdc16-1 and cdc46-1. These relationships reflect specific interactions, as overexpression of CTF13 caused lethality in kinetochore mutants and overexpression of ORC6 caused lethality in replication mutants. In contrast, only one case of dosage suppression was observed. We suggest that synthetic dosage lethality identifies a broad spectrum of interacting mutations and is of general utility in detecting specific genetic interactions using a cloned wild-type gene as a starting point. Furthermore, synthetic dosage lethality is easily adapted to the study of cloned genes in other organisms.  相似文献   

17.
To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.  相似文献   

18.
Cui M  Fay DS  Han M 《Genetics》2004,167(3):1177-1185
Null mutations in lin-35, the Caenorhabditis elegans ortholog of the mammalian Rb protein, cause no obvious morphological defects. Using a genetic approach to identify genes that may function redundantly with lin-35, we have isolated a mutation in the C. elegans psa-1 gene. lin-35; psa-1 double mutants display severe developmental defects leading to early larval arrest and adult sterility. The psa-1 gene has previously been shown to encode a C. elegans homolog of yeast SWI3, a critical component of the SWI/SNF complex, and has been shown to regulate asymmetric cell divisions during C. elegans development. We observed strong genetic interactions between psa-1 and lin-35 as well as a subset of the class B synMuv genes that include lin-37 and lin-9. Loss-of-function mutations in lin-35, lin-37, and lin-9 strongly enhanced the defects of asymmetric T cell division associated with a psa-1 mutation. Our results suggest that LIN-35/Rb and a certain class B synMuv proteins collaborate with the SWI/SNF protein complex to regulate the T cell division as well as other events essential for larval growth.  相似文献   

19.
Tijsterman M  Pothof J  Plasterk RH 《Genetics》2002,161(2):651-660
Mismatch-repair-deficient mutants were initially recognized as mutation-prone derivatives of bacteria, and later mismatch repair deficiency was found to predispose humans to colon cancers (HNPCC). We generated mismatch-repair-deficient Caenorhabditis elegans by deleting the msh-6 gene and analyzed the fidelity of transmission of genetic information to subsequent generations. msh-6-defective animals show an elevated level of spontaneous mutants in both the male and female germline; also repeated DNA tracts are unstable. To monitor DNA repeat instability in somatic tissue, we developed a sensitive system, making use of heat-shock promoter-driven lacZ transgenes, but with a repeat that puts this reporter gene out of frame. In genetic msh-6-deficient animals lacZ+ patches are observed as a result of somatic repeat instability. RNA interference by feeding wild-type animals dsRNA homologous to msh-2 or msh-6 also resulted in somatic DNA instability, as well as in germline mutagenesis, indicating that one can use C. elegans as a model system to discover genes involved in maintaining DNA stability by large-scale RNAi screens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号