首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MHC class I and class II are crucial for the adaptive immune system. Although regulation of MHC class II expression by CIITA has long been recognized, the mechanism of MHC class I transactivation has been largely unknown until the recent discovery of NLRC5/class I transactivator. In this study, we show using Nlrc5-deficient mice that NLRC5 is required for both constitutive and inducible MHC class I expression. Loss of Nlrc5 resulted in severe reduction in the expression of MHC class I and related genes such as β(2)-microglobulin, Tap1, or Lmp2, but did not affect MHC class II levels. IFN-γ stimulation could not overcome the impaired MHC class I expression in Nlrc5-deficient cells. Upon infection with Listeria monocyogenes, Nlrc5-deficient mice displayed impaired CD8(+) T cell activation, accompanied with increased bacterial loads. These findings illustrate critical roles of NLRC5/class I transactivator in MHC class I gene regulation and host defense by CD8(+) T cell responses.  相似文献   

2.
The NOD like receptors (NLRs), a class of intracellular receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. While NLRC5 is constitutively and widely expressed, it can be dramatically induced by interferons during pathogen infections. Both in vitro and in vivo studies have demonstrated that NLRC5 is a specifi c and master regulator of major mistocompatibility complex (MHC) class I genes as well as related genes involved in MHC class I antigen presentation. The expression of MHC class I genes is regulated by NLRC5 in coordination with the RFX components through an enhanceosome-dependent manner. And the involvement of NLRC5 in MHC class I mediated CD8+ T cell activation, proliferation and cytotoxicity is proved to be critical for host defense against intracellular bacterial infections. Nevertheless, the role of NLRC5 in innate immunity remains to be further explored. Here, we review the research advances on the structure, expression regulation and function of NLRC5.  相似文献   

3.
NOD-like receptors (NLRs) are a family of intracellular proteins that play critical roles in innate immunity against microbial infection. NLRC5, the largest member of the NLR family, has recently attracted much attention. However, in vitro studies have reported inconsistent results about the roles of NLRC5 in host defense and in regulating immune signaling pathways. The in vivo function of NLRC5 remains unknown. Here, we report that NLRC5 is a critical regulator of host defense against intracellular pathogens in vivo. NLRC5 was specifically required for the expression of genes involved in MHC class I antigen presentation. NLRC5-deficient mice showed a profound defect in the expression of MHC class I genes and a concomitant failure to activate L. monocytogenes-specific CD8+ T cell responses, including activation, proliferation and cytotoxicity, and the mutant mice were more susceptible to the pathogen infection. NLRP3-mediated inflammasome activation was also partially impaired in NLRC5-deficient mice. However, NLRC5 was dispensable for pathogen-induced expression of NF-κB-dependent pro-inflammatory genes as well as type I interferon genes. Thus, NLRC5 critically regulates MHC class I antigen presentation to control intracellular pathogen infection.  相似文献   

4.
5.
6.
7.
8.
9.
ObjectivesNLR family CARD domain containing 5 (NLRC5) could promote major histocompatibility complex class I (MHC-I)-dependent CD8+ T cell-mediated anticancer immunity. In this study, the immunosurveillance role and underlying mechanisms of NLRC5 in endometrial cancer (EC) were characterized.MethodsCD8+ T cells were separated from healthy women's peripheral blood by using magnetic beads. The effect of NLRC5 and interferon-β (IFN-β) on immunosurveillance of EC were examined through a mouse tumor model and a CD8+ T cell-EC cell coculture system after NLRC5 overexpression and IFN-β overexpression or depletion. The effect of NLRC5 on IFN-β expression was examined with gain- and loss-of-function experiments.ResultsNLRC5 overexpression in the EC cell and CD8+ T cell coculture system inhibited EC cell proliferation and migration and promoted EC cell apoptosis and CD8+ T cell proliferation. In vivo, NLRC5 overexpression increased the proportion of CD8+ T cells and inhibited EC progression. Furthermore, IFN-β overexpression in the EC cell and CD8+ T cell coculture system activated CD8+ T cell proliferation; however, genetic depletion of IFN-β exerted the opposite effects. In addition, NLRC5 could negatively regulate IFN-β expression in EC cells. Mechanistically, NLRC5 potentiated the antitumor responses of CD8+ T cells to EC by activating IFN-β.ConclusionsTaken together, our findings demonstrated that NLRC5 potentiates anti-tumor CD8+ T cells responses by activating interferon-β in EC, suggesting that genetically escalated NLRC5 and IFN-β may act as potential candidates for the clinical translation of adjuvant immunotherapies to patients with EC.  相似文献   

10.
Proteins of the nucleotide-binding domain, leucine-rich repeat (NLR)-containing family recently gained attention as important components of the innate immune system. Although over 20 of these proteins are present in humans, only a few members including the cytosolic pattern recognition receptors NOD1, NOD2, and NLRP3 have been analyzed extensively. These NLRs were shown to be pivotal for mounting innate immune response toward microbial invasion. Here we report on the characterization of human NLRC5 and provide evidence that this NLR has a function in innate immune responses. We found that NLRC5 is a cytosolic protein expressed predominantly in hematopoetic cells. NLRC5 mRNA and protein expression was inducible by the double-stranded RNA analog poly(I·C) and Sendai virus. Overexpression of NLRC5 failed to trigger inflammatory responses such as the NF-κB or interferon pathways in HEK293T cells. However, knockdown of endogenous NLRC5 reduced Sendai virus- and poly(I·C)-mediated type I interferon pathway-dependent responses in THP-1 cells and human primary dermal fibroblasts. Taken together, this defines a function for NLRC5 in anti-viral innate immune responses.  相似文献   

11.
Endoplasmic reticulum (ER) unfolded protein responses (UPR) are implicated in the pathogenesis of inflammatory bowel disease. Cytotoxic CD8αβ(+) intraepithelial lymphocytes (IEL) contribute to the development of Crohn's disease-like ileitis in TNF(ΔARE/+) mice. In this study, we characterized the role of ER-UPR mechanisms in contributing to the disease-associated phenotype of cytotoxic IEL under conditions of chronic inflammation. Inflamed TNF(ΔARE/+) mice exhibited increased expression of Grp78, ATF6, ATF4, and spliced XBP1 in CD8αβ(+) IEL but not in CD8αα(+) IEL or in lamina propria lymphocytes. Chromatin immunoprecipitation analysis in CD8αβ(+) T cells showed selective recruitment of ER-UPR transducers to the granzyme B gene promoter. Heterozygous Grp78(-/+) mice exhibited an attenuated granzyme B-dependent cytotoxicity of CD8αβ(+) T cells against intestinal epithelial cells, suggesting a critical activity of this ER-associated chaperone in maintaining a cytotoxic T cell phenotype. Granzyme B-deficient CD8αβ(+) T cells showed a defect in IL-2-mediated proliferation in Grp78(-/+) mice. Adoptively transferred Grp78(-/+) CD8αβ(+) T cells had a decreased frequency of accumulation in the intestine of RAG2(-/-) recipient mice. The tissue pathology in TNF(ΔARE/+) × Grp78(-/+) mice was similar to TNF(ΔARE/+) mice, even though the cytotoxic effector functions of CD8αβ(+) T cells were significantly reduced. In conclusion, ER stress-associated UPR mechanisms promote the development and maintenance of the pathogenic cytotoxic CD8αβ(+) IEL phenotype in the mouse model of Crohn's disease-like ileitis.  相似文献   

12.
MHC class I-specific inhibitory receptors are expressed by a subset of memory-phenotype CD8(+) T cells. Similar to NK cells, MHC class I-specific inhibitory receptors might subserve on T cells an important negative control that participates to the prevention of autologous damage. We analyzed here human CD8(+) T cells that express the Ig-like MHC class I-specific inhibitory receptors: killer cell Ig-like receptor (KIR) and CD85j. The cell surface expression of Ig-like inhibitory MHC class I receptors was found to correlate with an advanced stage of CD8(+) T cell maturation as evidenced by the reduced proliferative potential of KIR(+) and CD85j(+) T cells associated with their high intracytoplasmic perforin content. This concomitant regulation might represent a safety mechanism to control potentially harmful cytolytic CD8(+) T cells, by raising their activation threshold. Yet, KIR(+) and CD85j(+) T cells present distinct features. KIR(+)CD8(+) T cells are poor IFN-gamma producers upon TCR engagement. In addition, KIR are barely detectable at the surface of virus-specific T cells during the course of CMV or HIV-1 infection. By contrast, CD85j(+)CD8(+) T cells produce IFN-gamma upon TCR triggering, and represent a large fraction of virus-specific T cells. Thus, the cell surface expression of Ig-like inhibitory MHC class I receptors is associated with T cell engagement into various stages of the cytolytic differentiation pathway, and the cell surface expression of CD85j or KIR witnesses to the history of qualitatively and/or quantitatively distinct T cell activation events.  相似文献   

13.
14.
The development of TCR alphabeta(+), CD8alphabeta(+) intestinal intraepithelial lymphocytes (IEL) is dependent on MHC class I molecules expressed in the thymus, while some CD8alphaalpha(+) IEL may arise independently of MHC class I. We examined the influence of MHC I allele dosage on the development CD8(+) T cells in RAG 2(-/-) mice expressing the H-2D(b)-restricted transgenic TCR specific for the male, Smcy-derived H-Y Ag (H-Y TCR). IEL in male mice heterozygous for the restricting (H-2D(b)) and nonrestricting (H-2D(d)) MHC class I alleles (MHC F(1)) were composed of a mixture of CD8alphabeta(+) and CD8alphaalpha(+) T cells, while T cells in the spleen were mostly CD8alphabeta(+). This was unlike IEL in male mice homozygous for H-2D(b), which had predominantly CD8alphaalpha(+) IEL and few mostly CD8(-) T cells in the spleen. Our results demonstrate that deletion of CD8alphabeta(+) cells in H-Y TCR male mice is dependent on two copies of H-2D(b), whereas the generation of CD8alphaalpha(+) IEL requires only one copy. The existence of CD8alphabeta(+) and CD8alphaalpha(+) IEL in MHC F(1) mice suggests that their generation is not mutually exclusive in cells with identical TCR. Furthermore, our data imply that the level of the restricting MHC class I allele determines a threshold for conventional CD8alphabeta(+) T cell selection in the thymus of H-Y TCR-transgenic mice, whereas the development of CD8alphaalpha(+) IEL is dependent on, but less sensitive to, this MHC class I allele.  相似文献   

15.
Inhibition of graft-versus-host disease by double-negative regulatory T cells   总被引:12,自引:0,他引:12  
Pretransplant infusion of lymphocytes that express a single allogeneic MHC class I Ag has been shown to induce tolerance to skin and heart allografts that express the same alloantigens. In this study, we demonstrate that reconstitution of immunoincompetent mice with spleen cells from MHC class I L(d)-mismatched donors does not cause graft-vs-host disease (GVHD). Recipient mice become tolerant to skin allografts of lymphocyte donor origin while retaining immunity to third-party alloantigens. The mechanism involves donor-derived CD3(+)CD4(-)CD8(-) double-negative T regulatory (DN Treg) cells, which greatly increase and form the majority of T lymphocytes in the spleen of recipient mice. DN Treg cells isolated from tolerant recipient mice can suppress the proliferation of syngeneic antihost CD8(+) T cells in vitro. Furthermore, we demonstrate that DN Treg cells can be generated in vitro by stimulating them with MHC class I L(d)-mismatched lymphocytes. These in vitro generated L(d)-specific DN Treg cells are able to down-regulate the activity of antihost CD8(+) T cells in vitro by directly killing activated CD8(+) T cells. Moreover, infusing in vitro generated L(d)-mismatched DN Treg cells prevented the development of GVHD caused by allogeneic CD8(+) T cells. Together these data demonstrate that infusion of single MHC class I locus-mismatched lymphocytes may induce donor-specific transplantation tolerance through activation of DN Treg cells, which can suppress antihost CD8(+) T cells and prevent the development of GVHD. This finding indicates that using single class I locus-mismatched grafts may be a viable alternative to using fully matched grafts in bone marrow transplantation.  相似文献   

16.
Generation of CD3+CD8low thymocytes in the HIV type 1-infected thymus   总被引:3,自引:0,他引:3  
Infection with the HIV type 1 (HIV-1) can result both in depletion of CD4(+) T cells and in the generation of dysfunctional CD8(+) T cells. In HIV-1-infected children, repopulation of the peripheral T cell pool is mediated by the thymus, which is itself susceptible to HIV-1 infection. Previous work has shown that MHC class I (MHC I) molecules are strongly up-regulated as result of IFN-alpha secretion in the HIV-1-infected thymus. We demonstrate in this study that increased MHC I up-regulation on thymic epithelial cells and double-positive CD3(-/int)CD4(+)CD8(+) thymocytes correlates with the generation of mature single-positive CD4(-)CD8(+) thymocytes that have low expression of CD8. Treatment of HIV-1-infected thymus with highly active antiretroviral therapy normalizes MHC I expression and surface CD8 expression on such CD4(-)CD8(+) thymocytes. In pediatric patients with possible HIV-1 infection of the thymus, a low CD3 percentage in the peripheral circulation is also associated with a CD8(low) phenotype on circulating CD3(+)CD8(+) T cells. Furthermore, CD8(low) peripheral T cells from these HIV-1(+) pediatric patients are less responsive to stimulation by Ags from CMV. These data indicate that IFN-alpha-mediated MHC I up-regulation on thymic epithelial cells may lead to high avidity interactions with developing double-positive thymocytes and drive the selection of dysfunctional CD3(+)CD8(low) T cells. We suggest that this HIV-1-initiated selection process may contribute to the generation of dysfunctional CD8(+) T cells in HIV-1-infected patients.  相似文献   

17.
In type 1 diabetes, cytokine action on beta cells potentially contributes to beta cell destruction by direct cytotoxicity, inducing Fas expression, and up-regulating class I MHC and chemokine expression to increase immune recognition. To simultaneously block beta cell responsiveness to multiple cytokines, we overexpressed suppressor of cytokine signaling-1 (SOCS-1). This completely prevented progression to diabetes in CD8(+) TCR transgenic nonobese diabetic (NOD) 8.3 mice without affecting pancreas infiltration and partially prevented diabetes in nontransgenic NOD mice. SOCS-1 appeared to protect at least in part by inhibiting TNF- and IFN-gamma-induced Fas expression on beta cells. Fas expression was up-regulated on beta cells in vivo in prediabetic NOD8.3 mice, and this was inhibited by SOCS-1. Additionally, IFN-gamma-induced class I MHC up-regulation and TNF- and IFN-gamma-induced IL-15 expression by beta cells were inhibited by SOCS-1, which correlated with suppressed 8.3 T cell proliferation in vitro. Despite this, 8.3 T cell priming in vivo appeared unaffected. Therefore, blocking beta cell responses to cytokines impairs recognition by CD8(+) T cells and blocks multiple mechanisms of beta cell destruction, but does not prevent T cell priming and recruitment to the islets. Our findings suggest that increasing SOCS-1 expression may be useful as a strategy to block CD8(+) T cell-mediated type 1 diabetes as well as to more generally prevent cytokine-dependent tissue destruction in inflammatory diseases.  相似文献   

18.
In recent years, studies on the molecular and cellular mechanisms of immune responses against melanoma have contributed to a better understanding of how these tumours can be recognised by cytotoxic cells and the mechanisms they have developed to escape from innate and adaptive immunity. Lysis of melanoma cells by natural killer (NK) cells and cytolytic T cells is the result of a fine balance between signals transmitted by activating and inhibitory receptors. In addition to the T cell receptor, these were initially described as NK cell-associated receptors (NKRs) and were later also found on subsets of T lymphocytes, particularly effector-memory and terminally differentiated CD8 T cells. An increase of NKR(+)CD8(+) T cells has been found in melanoma patients, correlating with the expansion of differentiated effector CD8(+)CD28(null) CD27(null) T cells. NKRs can regulate the lysis of target cells expressing appropriate ligands. Activating receptors recognise ligands on tumours whereas inhibitory receptors are specific for MHC class I antigens and sense missing self. Altered expression of MHC class I antigens is frequently found on melanoma cells, preventing recognition by specific cytolytic T cells but favouring NK cell recognition. Changes in the expression of NKR-ligands in melanoma contribute in explaining the differences in the capacity of cytotoxic immune cells to control melanoma growth and dissemination.  相似文献   

19.
Moro H  Otero DC  Tanabe Y  David M 《PloS one》2011,6(9):e24972
STAT1 is an essential part of interferon signaling, and STAT1-deficiency results in heightened susceptibility to infections or autoimmunity in both mice and humans. Here we report that mice lacking the IFNα/β-receptor (IFNAR1) or STAT1 display impaired deletion of autoreactive CD4(+)CD8(+)-T-cells. Strikingly, co-existence of WT T cells restored thymic elimination of self-reactive STAT1-deficient CD4(+)CD8(+)-T cells. Analysis of STAT1-deficient thymocytes further revealed reduced Bim expression, which was restored in the presence of WT T cells. These results indicate that type I interferons and STAT1 play an important role in the survival of MHC class I-restricted T cells in a T cell intrinsic and non-cell intrinsic manner that involves regulation of Bim expression through feedback provided by mature STAT1-competent T cells.  相似文献   

20.
Cross-presentation of self Ags by APCs is key to the initiation of organ-specific autoimmunity. As MHC class I molecules are essential for the initiation of diabetes in nonobese diabetic (NOD) mice, we sought to determine whether the initial insult that allows cross-presentation of beta cell autoantigens in diabetes is caused by cognate interactions between naive CD8(+) T cells and beta cells. Naive splenic CD8(+) T cells from transgenic NOD mice expressing a diabetogenic TCR killed peptide-pulsed targets in the absence of APCs. To ascertain the role of CD8(+) T cell-induced beta cell lysis in the initiation of diabetes, we expressed a rat insulin promoter (RIP)-driven adenovirus E19 transgene in NOD mice. RIP-E19 expression inhibited MHC class I transport exclusively in beta cells and rendered these cells resistant to lysis by CD8(+) (but not CD4(+)) T cells, both in vitro and in vivo. Surprisingly, RIP-E19 expression impaired the accumulation of CD8(+) T cells in islets and delayed the onset of islet inflammation, without affecting the timing or magnitude of T cell cross-priming in the pancreatic lymph nodes, which is the earliest known event in diabetogenesis. These results suggest that access of beta cell autoantigens to the cross-presentation pathway in diabetes is T cell independent, and reveal a previously unrecognized function of MHC class I molecules on target cells in autoimmunity: local retention of disease-initiating clonotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号