共查询到12条相似文献,搜索用时 0 毫秒
1.
The highly conserved internal stem-loop (ISL) of U6 spliceosomal RNA is unwound for U4/U6 complex formation during spliceosome assembly and reformed upon U4 release during spliceosome activation. The U6 ISL is structurally similar to Domain 5 of group II self-splicing introns, and contains a dynamic bulge that coordinates a Mg++ ion essential for the first catalytic step of splicing. We have analyzed the causes of growth defects resulting from mutations in the Saccharomyces cerevisiae U6 ISL-bulged nucleotide U80 and the adjacent C67-A79 base pair. Intragenic suppressors and enhancers of the cold-sensitive A79G mutation, which replaces the C-A pair with a C-G pair, suggest that it stabilizes the ISL, inhibits U4/U6 assembly, and may also disrupt spliceosome activation. The lethality of mutations C67A and C67G results from disruption of base-pairing potential between U4 and U6, as these mutations are fully suppressed by compensatory mutations in U4 RNA. Strikingly, suppressor analysis shows that the lethality of the U80G mutation is due not only to formation of a stable base pair with C67, as previously proposed, but also another defect. A U6-U80G strain in which mispairing with position 67 is prevented grows poorly and assembles aberrant spliceosomes that retain U1 snRNP and fail to fully unwind the U4/U6 complex at elevated temperatures. Our data suggest that the U6 ISL bulge is important for coupling U1 snRNP release with U4/U6 unwinding during spliceosome activation. 相似文献
2.
The U2/U6 snRNA complex is a conserved and essential component of the active spliceosome that interacts with the pre-mRNA substrate and essential protein splicing factors to promote splicing catalysis. Here we have elucidated the solution structure of a 111-nucleotide U2/U6 complex using an approach that integrates SAXS, NMR, and molecular modeling. The U2/U6 structure contains a three-helix junction that forms an extended "Y" shape. The U6 internal stem-loop (ISL) forms a continuous stack with U2/U6 Helices Ib, Ia, and III. The coaxial stacking of Helix Ib on the U6 ISL is a configuration that is similar to the Domain V structure in group II introns. Interestingly, essential features of the complex--including the U80 metal binding site, AGC triad, and pre-mRNA recognition sites--localize to one face of the molecule. This observation suggests that the U2/U6 structure is well-suited for orienting substrate and cofactors during splicing catalysis. 相似文献
3.
Structural basis for the dual U4 and U4atac snRNA-binding specificity of spliceosomal protein hPrp31
Human proteins 15.5K and hPrp31 are components of the major spliceosomal U4 snRNP and of the minor spliceosomal U4atac snRNP. The two proteins bind to related 5'-stem loops (5'SLs) of the U4 and U4atac snRNAs in a strictly sequential fashion. The primary binding 15.5K protein binds at K-turns that exhibit identical sequences in the two snRNAs. However, RNA sequences contacted by the secondary binding hPrp31 differ in U4 and U4atac snRNAs, and the mechanism by which hPrp31 achieves its dual specificity is presently unknown. We show by crystal structure analysis that the capping pentaloops of the U4 and U4atac 5'SLs adopt different structures in the ternary hPrp31-15.5K-snRNA complexes. In U4atac snRNA, a noncanonical base pair forms across the pentaloop, based on which the RNA establishes more intimate interactions with hPrp31 compared with U4 snRNA. Stacking of hPrp31-His270 on the noncanonical base pair at the base of the U4atac pentaloop recapitulates intramolecular stabilizing principles known from the UUCG and GNRA families of RNA tetraloops. Rational mutagenesis corroborated the importance of the noncanonical base pair and the U4atac-specific hPrp31-RNA interactions for complex stability. The more extensive hPrp31-U4atac snRNA interactions are in line with a higher stability of the U4atac compared with the U4-based ternary complex seen in gel-shift assays, which may explain how U4atac snRNA can compete with the more abundant U4 snRNA for the same protein partners in vivo. 相似文献
4.
V. Sumpter A. Kahrs U. Fischer U. Kornstädt R. Lührmann 《Molecular biology reports》1992,16(4):229-240
In this paper we describe a method for preparing native, RNA-free, proteins from anti-m3G purified snRNPs (U1, U2, U4/U6 and U5) and the subsequent quantitative reconstitution of U1 and U2 snRNPs from purified proteins and snRNA. Reconstituted U1 and U2 snRNPs contained the full complement of core proteins, B, B, D1, D2, D3, E, F and G. Both the U1 and U2 reconstituted particles were stable in CsCl gradients and had the expected buoyant density of 1.4 g/cm3. Reconstituted RNP particle formation was not competited by a 50 fold molar excess of tRNA, as determined by gel retardation assays. However, U1 and U2 particle formation was reduced in the presence of an excess of cold U1 or U2 snRNA demonstrating a specific RNA-protein interaction. U1 and U2 snRNPs were also efficiently reconstituted in vitro, utilizing proteins prepared from mono Q purified U1 and U2 snRNPs. This suggests that for the assembly of snRNPs in vitro no auxiliary proteins other than bona fide snRNP proteins appear to be required. The potential of this reconstitution technique for investigating snRNP assembly and snRNA-protein interactions is discussed.Abbreviations PEG
Polyethelene glycol
- PMSF
Phenylmethyl sulfonylfluoride
- TP
total proteins
- mAb
monoclonal antibody 相似文献
5.
6.
Andrew M Jobbins Sbastien Campagne Robert Weinmeister Christian M Lucas Alison R Gosliga Antoine Clery Li Chen Lucy P Eperon Mark J Hodson Andrew J Hudson Frdric H T Allain Ian C Eperon 《The EMBO journal》2022,41(1)
SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5′ splice site (SS), and both factors affect 5′ SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single‐molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1‐independent process of binding to an ESE. Structural analysis and cross‐linking data show that SRSF1 contacts U1 snRNA stem‐loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5′SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals. 相似文献
7.
Junya Wada Udumbara Rathnayake Lisa M. Jenkins Avinash Singh Moosa Mohammadi Ettore Appella Paul A. Randazzo Lawrence E. Samelson 《The Journal of biological chemistry》2022,298(3)
Activation of T cells upon engagement of the T cell antigen receptor rapidly leads to a number of phosphorylation and plasma membrane recruitment events. For example, translocation of phospholipase-Cγ1 (PLC−γ1) to the plasma membrane and its association with the transmembrane adapter protein LAT and two other adapter proteins, Gads and SLP-76, are critical events in the early T cell activation process. We have previously characterized the formation of a tetrameric LAT-Gads-SLP-76-PLC−γ1 complex by reconstitution in vitro and have also characterized the thermodynamics of tetramer formation. In the current study, we define how PLC−γ1 recruitment to liposomes, which serve as a plasma membrane surrogate, and PLC−γ1 activation are regulated both independently and additively by recruitment of PLC−γ1 to phosphorylated LAT, by formation of the LAT-Gads-SLP-76-PLC−γ1 tetramer, and by tyrosine phosphorylation of PLC−γ1. The recently solved structure of PLC−γ1 indicates that, in the resting state, several PLC−γ1 domains inhibit its enzymatic activity and contact with the plasma membrane. We propose the multiple cooperative steps that we observed likely lead to conformational alterations in the regulatory domains of PLC−γ1, enabling contact with its membrane substrate, disinhibition of PLC−γ1 enzymatic activity, and production of the phosphoinositide cleavage products necessary for T cell activation. 相似文献
8.
Yelena V. Grinkova 《Biochemical and biophysical research communications》2010,398(2):194-539
Traditional reconstitution of membrane cytochromes P450 monooxygenase system requires efficient solubilization of both P450 heme enzymes and redox partner NADPH dependent reductase, CPR, either in mixed micellar solution or by incorporation in liposomes. Here we describe a simple alternative approach to assembly of soluble complexes of monomeric human hepatic cytochrome P450 CYP3A4 with CPR by co-incorporation into nanoscale POPC bilayer Nanodiscs. Stable and fully functional complexes with different CPR:CYP3A4 stoichiometric ratios are formed within several minutes after addition of the full-length CPR to the solution of CYP3A4 preassembled into POPC Nanodiscs at 37 °C. We find that the steady state rates of NADPH oxidation and testosterone hydroxylation strongly depend on CPR:CYP3A4 ratio and reach maximum at tenfold molar access of CPR. The binding of CPR to CYP3A4 in Nanodiscs is tight, such that complexes with different stoichiometry can be separated by size-exclusion chromatography. Reconstitution systems based on the co-incorporation of CPR into preformed Nanodiscs with different human cytochromes P450 are suitable for high-throughput screening of substrates and inhibitors and for drug-drug interaction studies. 相似文献
9.
Nobukazu Nameki Masayuki Takizawa Takayuki Suzuki Shoko Tani Naohiro Kobayashi Taiichi Sakamoto Yutaka Muto Kanako Kuwasako 《Protein science : a publication of the Protein Society》2022,31(10)
SURP domains are exclusively found in splicing‐related proteins in all eukaryotes. SF3A1, a component of the U2 snRNP, has two tandem SURP domains, SURP1, and SURP2. SURP2 is permanently associated with a specific short region of SF3A3 within the SF3A protein complex whereas, SURP1 binds to the splicing factor SF1 for recruitment of U2 snRNP to the early spliceosomal complex, from which SF1 is dissociated during complex conversion. Here, we determined the solution structure of the complex of SURP1 and the human SF1 fragment using nuclear magnetic resonance (NMR) methods. SURP1 adopts the canonical topology of α1–α2–310–α3, in which α1 and α2 are connected by a single glycine residue in a particular backbone conformation, allowing the two α‐helices to be fixed at an acute angle. A hydrophobic patch, which is part of the characteristic surface formed by α1 and α2, specifically contacts a hydrophobic cluster on a 16‐residue α‐helix of the SF1 fragment. Furthermore, whereas only hydrophobic interactions occurred between SURP2 and the SF3A3 fragment, several salt bridges and hydrogen bonds were found between the residues of SURP1 and the SF1 fragment. This finding was confirmed through mutational studies using bio‐layer interferometry. The study also revealed that the dissociation constant between SURP1 and the SF1 fragment peptide was approximately 20 μM, indicating a weak or transient interaction. Collectively, these results indicate that the interplay between U2 snRNP and SF1 involves a transient interaction of SURP1, and this transient interaction appears to be common to most SURP domains, except for SURP2. 相似文献
10.
Akira Ichikawa Yoshinori Katakura Kiichiro Teruya Shuichi Hashizume Sanetaka Shirahata 《Cytotechnology》1999,31(1-2):133-141
In vitro immunization (IVI) techniques have a great potential in the production of human monoclonal antibodies (MAbs) against
various antigens. An IVI method of human peripheral blood lymphocytes (PBL) has been developed with a human lung adenocarcinoma
cell line in our laboratory. Although several cancer specific human MAbs were successfully generated by using this IVI method,
it was not available for soluble antigens, which prompted us to improve the method for generation of human MAbs against soluble
antigens. IVI with soluble antigens was effectively caused by the addition of muramyl dipeptides, interleukin-2 and interleukin-4.
It was found that the difference of sensitivity of lymphocytes depending upon donors could be overcome by finding the optimal
concentrations of IL-2 and IL-4. IVI of human PBL was performed with cholera toxin B subunit (CTB) and the immunized B cells
were transformed by Epstein-Barr virus. Anti-CTB antibody was detected using an indirect ELISA. B cells producing anti-CTB
antibodies were directly cloned by a soft agar cloning method.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
11.
G. Girija Lakshmi Sushmita GhoshGabriel P. Jones Roshni ParikhBridgette A. Rawlins Jack C. Vaughn 《Gene》2012
Alternative splicing greatly enhances the diversity of proteins encoded by eukaryotic genomes, and is also important in gene expression control. In contrast to the great depth of knowledge as to molecular mechanisms in the splicing pathway itself, relatively little is known about the regulatory events behind this process. The 5′-UTR and 3′-UTR in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation, and nearly 4000 of the roughly 14,000 protein coding genes in Drosophila contain introns of unknown functional significance in their 5′-UTR. Here we report the results of an RNA electrophoretic mobility shift analysis of Drosophila rnp-4f 5′-UTR intron 0 splicing regulatory proteins. The pre-mRNA potential regulatory element consists of an evolutionarily-conserved 177-nt stem-loop arising from pairing of intron 0 with part of adjacent exon 2. Incubation of in vitro transcribed probe with embryo protein extract is shown to result in two shifted RNA–protein bands, and protein extract from a dADAR null mutant fly line results in only one shifted band. A mutated stem-loop in which the conserved exon 2 primary sequence is changed but secondary structure maintained by introducing compensatory base changes results in diminished band shifts. To test the hypothesis that dADAR plays a role in intron splicing regulation in vivo, levels of unspliced rnp-4f mRNA in dADAR mutant were compared to wild-type via real-time qRT-PCR. The results show that during embryogenesis unspliced rnp-4f mRNA levels fall by up to 85% in the mutant, in support of the hypothesis. Taken together, these results demonstrate a novel role for dADAR protein in rnp-4f 5′-UTR alternative intron splicing regulation which is consistent with a previously proposed model. 相似文献