首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variant of human interferon-gamma (IFN-gamma) has been created in which the two chains of the homodimeric cytokine were linked N- to C-terminus by an eight residue polypeptide linker. The sequence of this linker was derived from a loop in bira bifunctional protein, and was determined from a structural database search. This "single-chain" variant was used to create an IFN-gamma molecule that binds only a single copy of the alpha-chain receptor, rather than the 2 alpha-chain receptor: 1 IFN-gamma binding stoichiometry observed for the native hormone. Crystals have been grown of a 1:1 complex between this single-chain molecule and the extracellular domain of its alpha-chain receptor. These crystals diffract beyond 2.0 A, significantly better than the 2.9 A observed for the native 2:1 complex. Density calculations suggest these crystals contain two complexes in the asymmetric unit; a self-rotation function confirms this conclusion.  相似文献   

2.
Cytokines of the interleukin-6 (IL-6)-type family all bind to the glycoprotein gp130 on the cell surface and require interaction with two gp130 or one gp130 and another related signal transducing receptor subunit. In addition, some cytokines of this family, such as IL-6, interleukin-11, ciliary neurotrophic factor, neuropoietin, cardiotrophin-1, and cardiotrophin-1-like-cytokine, interact with specific ligand binding receptor proteins. High- and low-affinity binding sites have been determined for these cytokines. So far, however, the stoichiometry of the signaling receptor complexes has remained unclear, because the formation of the cytokine/cytokine-receptor complexes has been analyzed with soluble receptor components in solution, which do not necessarily reflect the situation on the cellular membrane. Consequently, the binding affinities measured in solution have been orders of magnitude below the values obtained with whole cells. We have expressed two gp130 extracellular domains in the context of a Fc-fusion protein, which fixes the receptors within one dimension and thereby restricts the flexibility of the proteins in a fashion similar to that within the plasma membrane. We measured binding of IL-6 and interleukin-b receptor (IL-6R) by means of fluorescence-correlation spectroscopy. For the first time we have succeeded in recapitulating in a cell-free condition the binding affinities and dynamics of IL-6 and IL-6R to the gp130 receptor proteins, which have been determined on whole cells. Our results demonstrate that a dimer of gp130 first binds one IL-6/IL-6R complex and only at higher ligand concentrations does it bind a second IL-6/IL-6R complex. This view contrasts with the current perception of IL-6 receptor activation and reveals an alternative receptor activation mechanism.  相似文献   

3.
Receptor activation by IL5 and GM-CSF is a sequential process that depends on their interaction with a cytokine-specific subunit alpha and recruitment of a common signaling subunit beta (betac). In order to elucidate the assembly dynamics of these receptor subunits, we performed kinetic interaction analysis of the cytokine-receptor complex formation by a surface plasmon resonance biosensor. Using the extracellular domains of receptor fused with C-terminal V5-tag, we developed an assay method to co-anchor alpha and betac subunits on the biosensor surface. We demonstrated that dissociation of the cytokine-receptor complexes was slower when both subunits were co-anchored on the biosensor surface than when alpha subunit alone was anchored. The slow-dissociation effect of betac had a similar impact on GM-CSF receptor stabilization to that of IL5. The effects were abolished by alanine replacement of either Tyr18 or Tyr344 residue in betac, which together constitute key parts of a cytokine binding epitope. The data argue that betac plays an important role in preventing the ligand-receptor complexes from rapidly dissociating. This slow-dissociation effect of betac explains how, when multiple betac cytokine receptor alpha subunits are present on the same cell surface, selective betac usage can be controlled by sequestration in stabilized cytokine-alpha-betac complexes.  相似文献   

4.
From a human dendritic cell (DC) cDNA library, we identified a novel type I cytokine receptor, designated as cytokine receptor-like molecule 2 (CRL2). CRL2 cDNA encoded a 371-residue type I transmembrane protein with an extracellular domain of 210 residues and an intracellular domain of 119 residues. Its extracellular domain contains conserved cysteine residues and WAS-like motif in place of the hallmark of WSXWS motif present in other type I cytokine receptors. The intracellular domain contained a membrane-proximal "box 1" motif and conserved tyrosine residue potentially as a binding site for signal transducing molecules. CRL2 protein shares significant homology with common cytokine receptor (gammac) and interleukin-13 receptor alpha1 chain. Northern blot analysis showed that CRL2 was restrictedly expressed by spleen and peripheral blood leukocytes, and abundantly expressed by HL-60 cells. RT-PCR analysis demonstrated that CRL2 was preferentially expressed by DC and monocytes. Interestingly, CRL2 expression was up-regulated when monocytes were activated by LPS. These indicate that CRL2 may be involved in the biological functions of DC and monocytes. The Ba/F3 transfectants of CRL2 was retrovirally established with the expressed FLAG-tagged CRL2 in the size of approximately 48 kD, which could be efficiently immunoprecipitated. We also prepared a CRL2Ig fusion protein. The identification of its ligand and involvement of signal transduction will help to elucidate its potential function.  相似文献   

5.
Tissue factor (TF), a member of the cytokine receptor superfamily, is the obligate cofactor of coagulation factor VIIa (FVIIa), and has a pivotal role in initiating the extrinsic pathway of blood coagulation through formation of the TF x FVIIa complex. The crystal structure of the extracellular portion of rabbit TF has been solved at 2.35 A resolution and refined to a crystallographic R-value of 19.1% (free R-value, 27.7%). Like the human homologue, the extracellular portion consists of two fibronectin type III domains connected by a short alpha-helical segment. Unexpectedly, the two molecules in the crystallographic asymmetric unit differ in their relative domain-domain orientation, revealing unsuspected hinge motion consisting of a rotation of about 12.7 degrees around an axis intersecting the linker segment at residue 106. Superposition of rabbit tissue factor with free and bound human tissue factor allows for the detection of an identical, albeit smaller, hinge motion in human TF induced upon binding of FVIIa. This raises the possibility that a very similar hinge axis may be present in other members of the cytokine receptor superfamily.  相似文献   

6.
gp130 is a shared cytokine signaling receptor and the founding member of the 'tall' class of cytokine receptors. A crystal structure of the ligand-binding domains of gp130 in complex with human interleukin-6 (IL-6) and its a-receptor (IL-6Ralpha) revealed a hexameric architecture in which the gp130 membrane-distal regions were approximately 100 A apart, in contrast to the close apposition seen between short cytokine receptor complexes. Here we used single-particle EM to visualize the entire extracellular hexameric IL-6-IL-6Ralpha-gp130 complex, containing all six gp130 domains. The structure reveals that gp130 is bent such that the membrane-proximal domains of gp130 are close together at the cell surface, enabling activation of intracellular signaling. Variation in the receptor bend angles suggests a possible conformational transition from open to closed states upon ligand binding; this transition is probably representative of the other tall cytokine receptors.  相似文献   

7.
The members of the interleukin-6-type family of cytokines interact with receptors that have a modular structure and are built of several immunoglobulin-like and fibronectin type III-like domains. These receptors have a characteristic cytokine receptor homology region consisting of two fibronectin type III-like domains defined by a set of four conserved cysteines and a tryptophan-serine-X-tryptophan-serine sequence motif. On target cells, interleukin-6 (IL-6) initially binds to its cognate alpha-receptor and subsequently to a homodimer of the signal transducer receptor gp130. The IL-6 receptor (IL-6R) consists of three extracellular domains. The N-terminal immunoglobulin-like domain is not involved in ligand binding, whereas the third membrane-proximal fibronectin-like domain (IL-6R-D3) accounts for more than 90% of the binding energy to IL-6. Here, we present the solution structure of the IL-6R-D3 domain solved by multidimensional heteronuclear NMR spectroscopy.  相似文献   

8.
Hematopoietic cytokine receptors, such as the erythropoietin receptor (EpoR), are single membrane-spanning proteins. Signal transduction through EpoR is crucial for the formation of mature erythrocytes. Structural evidence shows that in the unliganded form EpoR exists as a preformed homodimer in an open scissor-like conformation precluding the activation of signaling. In contrast to the extracellular domain of the growth hormone receptor (GHR), the structure of the agonist-bound EpoR extracellular region shows only minimal contacts between the membrane-proximal regions. This evidence suggests that the domains facilitating receptor dimerization may differ between cytokine receptors. We show that the EpoR transmembrane domain (TM) has a strong potential to self interact in a bacterial reporter system. Abolishing self assembly of the EpoR TM by a double point mutation (Leu 240-Leu 241 mutated to Gly-Pro) impairs signal transduction by EpoR in hematopoietic cells and the formation of erythroid colonies upon reconstitution in erythroid progenitor cells from EpoR(-/-) mice. Interestingly, inhibiting TM self assembly in the constitutively active mutant EpoR R129C abrogates formation of disulfide-linked receptor homodimers and consequently results in the loss of ligand-independent signal transduction. Thus, efficient signal transduction through EpoR and possibly other preformed receptor oligomers may be determined by the dynamics of TM self assembly.  相似文献   

9.
The leptin receptor (LR) complex is composed of a single subunit belonging to the class I cytokine receptor family and exists as a preformed complex. The extracellular portion contains two cytokine receptor homology (CRH) domains, separated by an Ig-like domain and followed by two membrane-proximal fibronectin type III (FNIII) domains. The mechanisms underlying ligand-induced receptor activation are still poorly understood. LRs can exist as disulfide-linked dimers at the cell surface, even in the absence of leptin. We evaluated the role of the two unpaired cysteine residues (Cys-672 and Cys-751) in the FNIII domains in receptor clustering, leptin binding, and biological activity. Although mutation of cysteine on position 751 to serine has hardly any effect on ligand binding and receptor activation, the C672S mutant exhibits a marked reduction in STAT3-dependent signaling. The double mutant was completely devoid of biological activity, although leptin binding remained unaffected. Mutation of both residues resulted in complete loss of disulfide bridge formation of FNIII domains in solution. In contrast, no difference was observed in ligand-independent oligomerization of the membrane-bound receptor, suggesting a role for cysteines in the CRH2 domain in formation of the preformed LR complex. We propose a model wherein leptin-induced clustering of two preformed dimers forms the activated LR complex. Disulfide bridge formation involving Cys-672 and Cys-751 may be necessary for JAK activation and hence signaling.  相似文献   

10.
The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has?a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane proximal domain of the human PRLR and find that the tryptophans of the motif adopt a T-stack conformation in the unbound state. By contrast, in the hormone bound state, a Trp/Arg-ladder is formed. The conformational change is hormone-dependent and influences the receptor-receptor dimerization site 3. In the constitutively active, breast cancer-related receptor mutant PRLR(I146L), we observed a stabilization of the dimeric state and a change in the dynamics of the motif. Here we demonstrate a structural link between the WSXWS motif, hormone binding, and receptor dimerization and propose it?as?a general mechanism for class 1 receptor activation.  相似文献   

11.
12.
13.
Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.  相似文献   

14.
W S Alexander  D Metcalf    A R Dunn 《The EMBO journal》1995,14(22):5569-5578
c-Mpl, a receptor for thrombopoietin (TPO), belongs to the haemopoietin/cytokine receptor superfamily, a group of cell surface molecules characterized by conserved sequence motifs within their ligand binding domains. A recurring mechanism for the activation of haemopoietin receptors is the formation of functional complexes by receptor subunit oligomerization. Within the growth hormone receptor, a cluster of extracellular amino acids forms a dimer interface domain that stabilizes ligand-induced homodimers. This domain appears to be functionally conserved in the erythropoietin (EPO) receptor because substitution of cysteines for residues in the analogous region causes EPO-independent receptor activation via disulfide-linked homodimerization. This report identifies an homologous domain within the c-Mpl receptor. The substitution of cysteine residues for specific amino acids in the dimer interface homology regions of c-Mpl induced constitutive receptor activity. Factor-dependent FDC-P1 and Ba/F3 cells expressing the active receptor mutants no longer required exogenous factors and proliferated autonomously. The results imply that the normal process of TPO-stimulated Mpl activation occurs through receptor homodimerization and is mediated by a conserved haemopoietin receptor dimer interface domain. Moreover, cells expressing activated mutant Mpl receptors were tumorigenic in transplanted mice. Thus, like v-mpl, its viral counterpart, mutated forms of the cellular mpl gene also have oncogenic potential.  相似文献   

15.
Ciliary neurotrophic factor (CNTF) is a cytokine supporting the differentiation and survival of a number of neural cell types. Its receptor complex consists of a ligand-binding component, CNTF receptor (CNTFR), associated with two signaling receptor components, gp130 and leukemia inhibitory factor receptor (LIFR). Striking phenotypic differences between CNTF- and CNTFR-deficient mice suggest that CNTFR serves as a receptor for a second developmentally important ligand. We recently demonstrated that cardiotrophin-like cytokine (CLC) associates with the soluble orphan receptor cytokine-like factor-1 (CLF) to form a heterodimeric cytokine that displayed activities only on cells expressing the tripartite CNTF receptor on their surface. In this present study we examined the membrane binding of the CLC/CLF composite cytokine and observed a preferential interaction of the cytokine with the CNTFR subunit. Signaling pathways recruited by the CLC/CLF complex in human neuroblastoma cell lines were also analyzed in detail. The results obtained showed an activation of Janus kinases (JAK1, JAK2, and TYK2) leading to a tyrosine phosphorylation of the gp130 and LIFR. The phosphorylated signaling receptors served in turn as docking proteins for signal transducing molecules such as STAT3 and SHP-2. In vitro analysis revealed that the gp130-LIFR pathway could also stimulate the phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathways. In contrast to that reported before for CNTF, soluble CNTFR failed to promote the action CLC/CLF, and an absolute requirement of the membrane form of CNTFR was required to generate a functional response to the composite cytokine. This study reinforces the functional similarity between CNTF and the CLC/CLF composite cytokine defining the second ligand for CNTFR.  相似文献   

16.
17.
Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell‐surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short‐term receptor activation and signal initiation but decrease long‐term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand–receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
The hematopoietic colony stimulating factor-1 receptor (CSF-1R or FMS) is essential for the cellular repertoire of the mammalian immune system. Here, we report a structural and mechanistic consensus for the assembly of human and mouse CSF-1:CSF-1R complexes. The EM structure of the complete extracellular assembly of the human CSF-1:CSF-1R complex reveals how receptor dimerization by CSF-1 invokes a ternary complex featuring extensive homotypic receptor contacts and striking structural plasticity at the extremities of the complex. Studies by small-angle X-ray scattering of unliganded hCSF-1R point to large domain rearrangements upon CSF-1 binding, and provide structural evidence for the relevance of receptor predimerization at the cell surface. Comparative structural and binding studies aiming to dissect the assembly principles of human and mouse CSF-1R complexes, including a quantification of the CSF-1/CSF-1R species cross-reactivity, show that bivalent cytokine binding to receptor coupled to ensuing receptor-receptor interactions are common denominators in extracellular complex formation.  相似文献   

19.
The stoichiometry of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor complex is still unresolved. We have utilised a sensitive, functional assay for receptor homodimerisation to show that GM-CSF induces dimerisation of the common signalling subunit, hbeta(c). We generated a chimeric cytokine receptor in which the extracellular and transmembrane domains of hbeta(c)are fused to the cytoplasmic domain of erythropoietin receptor (EPO-R). Given that to induce EPO-R activation and mitogenic signalling there is a requirement for formation of a specific homodimeric complex, we reasoned that the cytoplasmic domain of EPO-R could be utilised as a highly sensitive reporter for functional homodimer formation. We show that, in the presence of a cytoplasmically truncated GM-CSF alpha-subunit, the hbetac-EPO receptor chimera transduces a mitogenic signal in BaF-B03 in response to GM-CSF. This is consistent with formation of a hbeta(c)homodimer following GM-CSF binding and implies that ligand stimulation induces formation of a higher order complex that contains the hbeta(c)homodimer.  相似文献   

20.
The transmembrane glycoprotein gp130 is the common signal transducing receptor subunit of the interleukin-6-type cytokines. It is a member of the cytokine-receptor superfamily predicted to consist of six domains in its extracellular part. The second and third domain constitute the cytokine-binding module defined by a set of four conserved cysteines and a WSXWS motif, respectively. The three-dimensional structure of the carboxy-terminal domain of this region was determined by multidimensional NMR. The domain consists of seven beta-strands constituting a fibronectin type III-like topology. The structure reveals that the WSDWS motif of gp130 is part of an extended tryptophan/arginine zipper which modulates the conformation of the CD loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号