首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian genome is not a random sequence but shows a specific, evolutionarily conserved structure that becomes manifest in its isochore pattern. Isochores, i.e. stretches of DNA with a distinct sequence composition and thus a specific GC content, cause the chromosomal banding pattern. This fundamental level of genome organization is related to several functional features like the replication timing of a DNA sequence. GC richness of genomic regions generally corresponds to an early replication time during S phase. Recently, we demonstrated this interdependency on a molecular level for an abrupt transition from a GC-poor isochore to a GC-rich one in the NF1 gene region; this isochore boundary also separates late from early replicating chromatin. Now, we analyzed another genomic region containing four isochores separated by three sharp isochore transitions. Again, the GC-rich isochores were found to be replicating early, the GC-poor isochores late in S phase; one of the replication time zones was discovered to consist of one single replicon. At the boundaries between isochores, that all show no special sequence elements, the replication machinery stopped for several hours. Thus, our results emphasize the importance of isochores as functional genomic units, and of isochore transitions as genomic landmarks with a key function for chromosome organization and basic biological properties.  相似文献   

2.
The mammalian genome is organized as a mosaic of isochores, stretches of DNA with a distinct sequence composition. Isochores form the basis of the chromosomal banding pattern, which is tightly correlated with a number of structural and functional features. We have recently demonstrated that the transition from a GC-poor isochore to a GC-rich one in the NF1 gene region occurs within 5 kb and demarcates genomic regions with high and low recombination frequency. We now report that the same transition zone separates early replicating from late replicating chromatin on the molecular level. At the isochore transition the replication fork is stalled in mid-S phase and can be visualized by fiber-FISH techniques as a Y-shaped structure. The switch in GC content and in replication timing is conserved between human and mouse, emphasizing the importance of the transition zones as landmarks of chromosome organization and function.  相似文献   

3.
4.
During S-phase of the cell cycle, chromosomal DNA is replicated according to a complex replication timing program, with megabase-sized domains replicating at different times. DNA fibre analysis reveals that clusters of adjacent replication origins fire near-synchronously. Analysis of replicating cells by light microscopy shows that DNA synthesis occurs in discrete foci or factories. The relationship between timing domains, origin clusters and replication foci is currently unclear. Recent work, using a hybrid Xenopus/hamster replication system, has shown that when CDK levels are manipulated during S-phase the activation of replication factories can be uncoupled from progression through the replication timing program. Here, we use data from this hybrid system to investigate potential relationships between timing domains, origin clusters and replication foci. We suggest that each timing domain typically comprises several replicon clusters, which are usually processed sequentially by replication factories. We discuss how replication might be regulated at different levels to create this complex organisation and the potential involvement of CDKs in this process.  相似文献   

5.
6.
7.
DNA replication is spatially and temporally regulated during S-phase. DNA replication timing is established in early-G1-phase at a point referred to as timing decision point. However, how the genome-wide replication timing domains are established is unknown. Here, we show that Rif1 (Rap1-interacting-factor-1), originally identified as a telomere-binding factor in yeast, is a critical determinant of the replication timing programme in human cells. Depletion of Rif1 results in specific loss of mid-S replication foci profiles, stimulation of initiation events in early-S-phase and changes in long-range replication timing domain structures. Analyses of replication timing show replication of sequences normally replicating early is delayed, whereas that normally replicating late is advanced, suggesting that replication timing regulation is abrogated in the absence of Rif1. Rif1 tightly binds to nuclear-insoluble structures at late-M-to-early-G1 and regulates chromatin-loop sizes. Furthermore, Rif1 colocalizes specifically with the mid-S replication foci. Thus, Rif1 establishes the mid-S replication domains that are restrained from being activated at early-S-phase. Our results indicate that Rif1 plays crucial roles in determining the replication timing domain structures in human cells through regulating higher-order chromatin architecture.  相似文献   

8.
9.
10.
11.
12.
《Gene》1996,173(2):171-177
The region containing the GABAA receptor β3 and α5 subunit-encoding genes is subject to parental imprinting and is organized in different allele-specific replication timing domains. A 60-kb domain displaying a maternal early/paternal late pattern of allele-specific replication timing asynchrony is nested within a larger region displaying the opposite pattern. The proximal portion of this maternal early replicating domain is incorporated into phage clone λ84. In order to identify DNA structures which may be associated with the boundary between the replication domains, phage λ84 has been subcloned into smaller fragments and several of these have been analyzed by nucleotide sequencing. A plot of helical stability for 13 kb of contiguous sequence reveals several A +T-rich regions which display potential DNA unwinding. The plasmid subclones from phage λ84 have been analyzed for bent DNA and one of these, p82, contains bent DNA and overlaps with the region of highest potential helical instability. Of the seven plasmids tested, only p82 shows strong autonomous replication activity in an in vitro replication assay, with replication initiating within the genomic insert. These results suggest that a putative origin of DNA replication contained within p82 may play a role in establishing the allele-specific replication timing domains in the GABAA receptor subunit gene cluster.  相似文献   

13.
Regional variations of DNA GC content are observed in species as different as S.cerevisiae and humans. In vertebrates and yeast they are correlated with replication timing; late replicating chromosomal regions are more AT-rich than early replicating regions. We show here that gene composition in E.coli also has long range variations which are similarly correlated with replication timing. We suggest that the enrichment in AT base pairs in late replicating DNA reflects differences in DNA repair modes. These sequences, which are in single copy for a greater part of the cell cycle than origin-linked genes, have less opportunity to engage in repair via homologous recombination and therefore may resort more often to translesion synthesis involving the misincorporation of adenine opposite modified nucleotides.  相似文献   

14.
Since the G + C content of a gene is correlated to that of the isochore in which it resides, and early replicating isochores are thought to be relatively G + C rich, early replicating genes should also be rich in G + C. This hypothesis is tested on a sample of 44 mammalian genes for which replication time data and sequence information are available. Early replicating genes do not appear to be more G + C rich than late replicating genes, instead there is considerable variation in the G + C content of genes replicated during both halves of S phase. These results show that both G + C rich and poor fractions of the genome are replicated early and late in the cell cycle, and suggest that isochores are not maintained by the replication of DNA sequences in compositionally biased free nucleotide pools.  相似文献   

15.
To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.  相似文献   

16.
17.
BACKGROUND: The accurate duplication and packaging of the genome is an absolute prerequisite to the segregation of chromosomes in mitosis. To understand the process of cell-cycle chromosome dynamics further, we have performed the first detailed characterization of a mutation affecting mitotic chromosome condensation in a metazoan. Our combined genetic and cytological approaches in Drosophila complement and extend existing work employing yeast genetics and Xenopus in vitro extract systems to characterize higher-order chromosome structure and function. RESULTS: Two alleles of the ORC2 gene were found to cause death late in larval development, with defects in cell-cycle progression (delays in S-phase entry and metaphase exit) and chromosome condensation in mitosis. During S-phase progression in wild-type cells, euchromatin replicates early and heterochromatin replicates late. Both alleles disrupted the normal pattern of chromosomal replication, with some euchromatic regions replicating even later than heterochromatin. Mitotic chromosomes were irregularly condensed, with the abnormally late replicating regions of euchromatin exhibiting the greatest problems in mitotic condensation. CONCLUSIONS: The results not only reveal novel functions for ORC2 in chromosome architecture in metazoans, they also suggest that the correct timing of DNA replication may be essential for the assembly of chromatin that is fully competent to undergo mitotic condensation.  相似文献   

18.
Regulation of mouse satellite DNA replication time.   总被引:14,自引:2,他引:12       下载免费PDF全文
S Selig  M Ariel  R Goitein  M Marcus    H Cedar 《The EMBO journal》1988,7(2):419-426
The satellite DNA sequences located near the centromeric regions of mouse chromosomes replicate very late in S in both fibroblast and lymphocyte cells and are heavily methylated at CpG residues. F9 teratocarcinoma cells, on the other hand, contain satellite sequences which are undermethylated and replicate much earlier in S. DNA methylation probably plays some role in the control of satellite replication time since 5-azacytidine treatment of RAG fibroblasts causes a dramatic temporal shift of replication to mid S. In contrast to similar changes accompanying the inactivation of the X-chromosome, early replication of satellite DNA is not associated with an increase in local chromosomal DNase I sensitivity. Fusion of F9 with mouse lymphocytes caused a dramatic early shift in the timing of the normally late replicating lymphocyte satellite heterochromatin, suggesting that trans-activating factors may be responsible for the regulation of replication timing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号