首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The Aedes aegypti toll pathway controls dengue virus infection   总被引:1,自引:0,他引:1  
Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi)-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.  相似文献   

2.
Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito''s vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.  相似文献   

3.
Here we investigated the effect of Beauveria bassiana infection on the survival of Aedes aegypti mosquitoes and the modulation of their susceptibility to dengue virus infection. Application of B. bassiana caused a reduction in the life span of A. aegypti and hindered dengue virus replication in the mosquito midgut. Fungus infection induced the expression a variety anti-microbial and dengue virus restriction factor genes. Transient reverse genetic analyses showed that the JAK-STAT pathway is implicated anti-fungal defense of Aedes mosquitoes. Our data suggest that this B. bassiana-mediated anti-dengue activity is likely to be at least partly indirectly mediated through the activation of the mosquito’s anti-dengue Toll and JAK-STAT pathways.  相似文献   

4.
Ascogregarina culicis and Ascogregarina taiwanensis are common gregarine parasites of Aedes aegypti and Aedes albopictus mosquitoes, respectively. These mosquito species are also known to transmit dengue and Chikungunya viruses. The sporozoites of these parasites invade the midgut epithelial cells and develop intracellularly and extracellularly in the gut to complete their life cycles. The midgut is also the primary site for virus replication in the vector mosquitoes. Therefore, studies were carried out with a view to determine the possible role of these gregarines in the vertical transmission of dengue and Chikungunya viruses from larval to adult stage. Experiments were performed by exposing first instar mosquito larvae to suspensions containing parasite oocysts and viruses. Since Ascogregarina sporozoites invade the midgut of first instar larvae, the vertical transmission was determined by feeding the uninfected first instar larvae on the freshly prepared homogenates from mosquitoes, which were dually infected with viruses and the parasite oocysts. Similarly, the role of protozoan parasites in the vertical transmission of viruses was determined by exposing fresh first instar larvae to the dried pellets of homogenates prepared from the mosquitoes dually infected with viruses and the parasite oocysts. Direct vertical transmission and the vertical transmission of CHIK virus through the oocyst of the parasites were observed in the case of Ae. aegypti mosquitoes. It is suggested that As. culicis may have an important role in the maintenance of CHIK virus during the inter-epidemic period.  相似文献   

5.
Adult Aedes aegypti mosquitoes were collected in Puerto Triunfo, central Colombia, where dengue is endemic, during a six month period. Viral infection within the head of each individual mosquito was identified by an immunofluorescent assay (IFA) using a flavivirus-specific monoclonal antibody. The dengue virus serotype, present in each flavivirus-positive specimen, was then determined in portions of the remaining thorax using IFAs with serotype-specific monoclonal antibodies. Among 2065 female Aedes aegypti collected and tested, twenty-four flavivirus-positive individuals were found (minimum infection rate 11.6%), three identified as dengue type-1 and twenty-one as dengue type-2 virus. This was consistent with the isolation of only these two serotypes of dengue virus from dengue fever patients within this town. No vertical transmission of dengue virus could be detected in 1552 male Aedes aegypti collected. This method is inexpensive, simple, rapid to perform and suitable for use in developing countries to identify and distinguish different serotypes of dengue virus in their vectors during eco-epidemiological investigations.  相似文献   

6.
Interactions between bacterial microbiota and mosquitoes play an important role in mosquitoes’ capacity to transmit pathogens. However, microbiota assemblages within mosquitoes and the impact of microbiota in environments on mosquito development and survival remain unclear. This study examined microbiota assemblages and the effects of aquatic environment microbiota on the larval development of the Aedes albopictus mosquito, an important dengue virus vector. Life table studies have found that reducing bacterial load in natural aquatic habitats through water filtering and treatment with antibiotics significantly reduced the larva‐to‐adult emergence rate. This finding was consistent in two types of larval habitats examined—discarded tires and flowerpots, suggesting that bacteria play a crucial role in larval development. Pyrosequencing of the bacterial 16S rRNA gene was used to determine the diversity of bacterial communities in larval habitats and the resulting numbers of mosquitoes under both laboratory and field conditions. The microbiota profiling identified common shared bacteria among samples from different years; further studies are needed to determine whether these bacteria represent a core microbiota. The highest microbiota diversity was found in aquatic habitats, followed by mosquito larvae, and the lowest in adult mosquitoes. Mosquito larvae ingested their bacterial microbiota and nutrients from aquatic habitats of high microbiota diversity. Taken together, the results support the observation that Ae. albopictus larvae are able to utilize diverse bacteria from aquatic habitats and that live bacteria from aquatic habitats play an important role in larval mosquito development and survival. These findings provide new insights into bacteria's role in mosquito larval ecology.  相似文献   

7.
The mosquito Aedes aegypti is the most important vector of yellow fever and dengue fever flaviviruses. Ae. aegypti eradication campaigns have not been sustainable and there are no effective vaccines for dengue viruses. Alternative control strategies may depend upon identification of mosquito genes that condition flavivirus susceptibility and may ultimately provide clues for interrupting transmission. Quantitative trait loci affecting the ability of Ae. aegypti to develop a dengue-2 infection in the midgut have been mapped previously. Herein we report on QTL that determine whether mosquitoes with a dengue-2-infected gut can then disseminate the virus to other tissues. A strain selected for high rates of dengue-2 dissemination was crossed to a strain selected for low dissemination rates. QTL were mapped in the F(2) and again in an F(5) advanced intercross line. QTL were detected at 31 cM on chromosome I, at 32 cM on chromosome II, and between 44 and 52 cM on chromosome III. Alleles at these QTL were additive or dominant in determining rates of dengue-2 dissemination and accounted for approximately 45% of the phenotypic variance. The locations of dengue-2 midgut infection and dissemination QTL correspond to those found in earlier studies.  相似文献   

8.
9.
Dengue viruses (DENV) are transmitted to humans by the bite of Aedes aegypti or Aedes albopictus mosquitoes, with millions of infections annually in over 100 countries. The diseases they produce, which occur exclusively in humans, are dengue fever (DF) and dengue hemorrhagic fever (DHF). We previously developed a humanized mouse model of DF in which mice transplanted with human hematopoietic stem cells produced signs of DENV disease after injection with low-passage, wild-type isolates. Using these mice, but now allowing infected A. aegypti to transmit dengue virus during feeding, we observed signs of more severe disease (higher and more sustained viremia, erythema, and thrombocytopenia). Infected mice mounted innate (gamma interferon [IFN-γ] and soluble interleukin 2 receptor alpha [sIL-2Rα]) and adaptive (anti-DENV antibodies) immune responses that failed to clear viremia until day 56, while a mosquito bite alone induced strong immunomodulators (tumor necrosis factor alpha [TNF-α], IL-4, and IL-10) and thrombocytopenia. This is the first animal model that allows an evaluation of human immunity to DENV infection after mosquito inoculation.  相似文献   

10.
11.
Incessant transmission of the parasite by mosquitoes makes most attempts to control malaria fail. Blocking of parasite transmission by mosquitoes therefore is a rational strategy to combat the disease. Upon ingestion of blood meal mosquitoes secrete chitinase into the midgut. This mosquito chitinase is a zymogen which is activated by the removal of a propeptide from the N-terminal. Since the midgut peritrophic matrix acts as a physical barrier, the activated chitinase is likely to contribute to the further development of the malaria parasite in the mosquito. Earlier it has been shown that inhibiting chitinase activity in the mosquito midgut blocked sporogonic development of the malaria parasite. Since synthetic propeptides of several zymogens have been found to be potent inhibitors of their respective enzymes, we tested propeptide of mosquito midgut chitinase as an inhibitor and found that the propeptide almost completely inhibited the recombinant or purified native Anopheles gambiae chitinase. We also examined the effect of the inhibitory peptide on malaria parasite development. The result showed that the synthetic propeptide blocked the development of human malaria parasite Plasmodium falciparum in the African malaria vector An. gambiae and avian malaria parasite Plasmodium gallinaceum in Aedes aegypti mosquitoes. This study implies that the expression of inhibitory mosquito midgut chitinase propeptide in response to blood meal may alter the mosquito's vectorial capacity. This may lead to developing novel strategies for controlling the spread of malaria.  相似文献   

12.
Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23) and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections.  相似文献   

13.
Dengue is the most common mosquito-borne viral disease in humans. The spread of both mosquito vectors and viruses has led to the resurgence of epidemic dengue fever (a self-limited flu-like syndrome) and the emergence of dengue hemorrhagic fever (severe dengue with bleeding abnormalities) in urban centers of the tropics. There are no animal or laboratory models of dengue disease; indirect evidence suggests that dengue viruses differ in virulence, including their pathogenicities for humans and epidemic potential. We developed two assay systems (using human dendritic cells and Aedes aegypti mosquitoes) for measuring differences in virus replication that correlate with the potential to cause hemorrhagic dengue and increased virus transmission. Infection and growth experiments showed that dengue serotype 2 viruses causing dengue hemorrhagic fever epidemics (Southeast Asian genotype) can outcompete viruses that cause dengue fever only (American genotype). This fact implies that Southeast Asian genotype viruses will continue to displace other viruses, causing more hemorrhagic dengue epidemics.  相似文献   

14.
Amaku M  Coutinho FA  Massad E 《Bio Systems》2011,106(2-3):111-120
Urban yellow fever and dengue coexist in Africa but not in Asia and South America. In this paper, we examine four hypotheses (and various combinations thereof) to explain the absence of yellow fever in urban areas of Asia and South America. In addition, we examine an additional hypothesis that offers an explanation of the coexistence of the infections in Africa while at the same time explaining their lack of coexistence in Asia. The hypotheses we tested to explain the nonexistence of yellow fever in Asia are the following: (1) the Asian Aedes aegypti is relatively incompetent to transmit yellow fever; (2) there would exist a competition between dengue and yellow fever viruses within the mosquitoes, as suggested by in vitro studies in which the dengue virus always wins; (3) when an A. aegypti mosquito that is infected by or latent for yellow fever acquires dengue, it becomes latent for dengue due to internal competition within the mosquito between the two viruses; (4) there is an important cross-immunity between yellow fever and other flaviviruses, dengue in particular, such that a person recovered from a bout of dengue exhibits a diminished susceptibility to yellow fever. This latter hypothesis is referred to below as the "Asian hypothesis." Finally, we hypothesize that: (5) the coexistence of the infections in Africa is due to the low prevalence of the mosquito Aedes albopictus in Africa, as it competes with A. aegypti. We will refer to this latter hypothesis as the "African hypothesis." We construct a model of transmission that allows all of the above hypotheses to be tested. We conclude that the Asian and the African hypotheses can explain the observed phenomena, whereas other hypotheses fail to do so.  相似文献   

15.
Aedes aegypti (L.) mosquitoes showed a significant reduction in susceptibility to infection with Ross River virus and Murray Valley encephalitis virus when they were fed on a blood-virus mixture containing rabbit antibodies to mosquito midgut components. Presence of the antibodies did not demonstrably affect virus titres in infected mosquitoes, nor the transmission of virus from infected mosquitoes to vertebrates.  相似文献   

16.
BackgroundMosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols.ResultsHere, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus.ConclusionThe present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.  相似文献   

17.

Background  

Vector competence refers to the intrinsic permissiveness of an arthropod vector for infection, replication and transmission of a virus. Notwithstanding studies of Quantitative Trait Loci (QTL) that influence the ability of Aedes aegypti midgut (MG) to become infected with dengue virus (DENV), no study to date has been undertaken to identify genetic markers of vector competence. Furthermore, it is known that mosquito populations differ greatly in their susceptibility to flaviviruses. Differences in vector competence may, at least in part, be due to the presence of specific midgut epithelial receptors and their identification would be a significant step forward in understanding the interaction of the virus with the mosquito. The first interaction of DENV with the insect is through proteins in the apical membrane of the midgut epithelium resulting in binding and receptor-mediated endocytosis of the virus, and this determines cell permissiveness to infection. The susceptibility of mosquitoes to infection may therefore depend on their specific virus receptors. To study this interaction in Ae. aegypti strains that differ in their vector competence for DENV, we investigated the DS3 strain (susceptible to DENV), the IBO-11 strain (refractory to infection) and the membrane escape barrier strain, DMEB, which is infected exclusively in the midgut epithelial cells.  相似文献   

18.

Background

Aedes aegypti is the main mosquito vector of the four serotypes of dengue virus (DENV). Previous population genetic and vector competence studies have demonstrated substantial genetic structure and major differences in the ability to transmit dengue viruses in Ae. aegypti populations in Mexico.

Methodology/Principal Findings

Population genetic studies revealed that the intersection of the Neovolcanic axis (NVA) with the Gulf of Mexico coast in the state of Veracruz acts as a discrete barrier to gene flow among Ae. aegypti populations north and south of the NVA. The mosquito populations north and south of the NVA also differed in their vector competence (VC) for dengue serotype 2 virus (DENV2). The average VC rate for Ae. aegypti mosquitoes from populations from north of the NVA was 0.55; in contrast the average VC rate for mosquitoes from populations from south of the NVA was 0.20. Most of this variation was attributable to a midgut infection and escape barriers. In Ae. aegypti north of the NVA 21.5% failed to develop midgut infections and 30.3% of those with an infected midgut failed to develop a disseminated infection. In contrast, south of the NVA 45.2% failed to develop midgut infections and 62.8% of those with an infected midgut failed to develop a disseminated infection.

Conclusions

Barriers to gene flow in vector populations may also impact the frequency of genes that condition continuous and epidemiologically relevant traits such as vector competence. Further studies are warranted to determine why the NVA is a barrier to gene flow and to determine whether the differences in vector competence seen north and south of the NVA are stable and epidemiologically significant.  相似文献   

19.
20.

Background  

The RNA interference (RNAi) pathway acts as an innate antiviral immune response in Aedes aegypti, modulating arbovirus infection of mosquitoes. Sindbis virus (SINV; family: Togaviridae, genus: Alphavirus) is an arbovirus that infects Ae. aegypti in the laboratory. SINV strain TR339 encounters a midgut escape barrier (MEB) during infection of Ae. aegypti. The nature of this barrier is not well understood. To investigate the role of the midgut as the central organ determining vector competence for arboviruses, we generated transgenic mosquitoes in which the RNAi pathway was impaired in midgut tissue of bloodfed females. We used these mosquitoes to reveal effects of RNAi impairment in the midgut on SINV replication, midgut infection and dissemination efficiencies, and mosquito longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号