首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide presentation by major histocompatibility complex (MHC) molecules is of central importance for immune responses, which are triggered through recognition of peptide-loaded MHC molecules (pMHC) by cellular ligands such as T-cell receptors (TCR). However, a unifying link between structural features of pMHC and cellular responses has not been established. Instead, pMHC/TCR binding studies suggest conformational and/or flexibility changes of the binding partners as a possible cause of differential T-cell stimulation, but information on real-time dynamics is lacking. We therefore probed the real-time dynamics of a MHC-bound nonapeptide (m9), by combining time-resolved fluorescence depolarization and molecular dynamics simulations. Here we show that the nanosecond dynamics of this peptide presented by two human MHC class I subtypes (HLA-B*2705 and HLA-B*2709) with differential autoimmune disease association varies dramatically, despite virtually identical crystal structures. The peptide dynamics is linked to the single, buried polymorphic residue 116 in the peptide binding groove. Pronounced peptide flexibility is seen only for the non-disease-associated subtype HLA-B*2709, suggesting an entropic control of peptide recognition. Thermodynamic data obtained for two additional peptides support this hypothesis.  相似文献   

2.
The underlying generic properties of alphabeta TCRs that control MHC restriction remain largely unresolved. To investigate MHC restriction, we have examined the CTL response to a viral epitope that binds promiscuously to two human leukocyte Ags (HLAs) that differ by a single amino acid at position 156. Individuals expressing either HLA-B*3501 (156Leucine) or HLA-B*3508 (156Arginine) showed a potent CTL response to the 407HPVGEADYFEY417 epitope from EBV. Interestingly, the response was characterized by highly restricted TCR beta-chain usage in both HLA-B*3501+ and HLA-B*3508+ individuals; however, this conserved TRBV9+ beta-chain was associated with distinct TCR alpha-chains depending upon the HLA-B*35 allele expressed by the virus-exposed host. Functional assays confirmed that TCR alpha-chain usage determined the HLA restriction of the CTLs. Structural studies revealed significant differences in the mobility of the peptide when bound to HLA-B*3501 or HLA-B*3508. In HLA-B*3501, the bulged section of the peptide was disordered, whereas in HLA-B*3508 the bulged epitope adopted an ordered conformation. Collectively, these data demonstrate not only that mobile MHC-bound peptides can be highly immunogenic but can also stimulate an extremely biased TCR repertoire. In addition, TCR alpha-chain usage is shown to play a critical role in controlling MHC restriction between closely related allomorphs.  相似文献   

3.
Although HLA class I alleles can bind epitopes up to 14 amino acids in length, little is known about the immunogenicity or the responding T-cell repertoire against such determinants. Here, we describe an HLA-B*3508-restricted cytotoxic T lymphocyte response to a 13-mer viral epitope (LPEPLPQGQLTAY). The rigid, centrally bulged epitope generated a biased T-cell response. Only the N-terminal face of the peptide bulge was critical for recognition by the dominant clonotype SB27. The SB27 public T-cell receptor (TcR) associated slowly onto the complex between the bulged peptide and the major histocompatibility complex, suggesting significant remodeling upon engagement. The broad antigen-binding cleft of HLA-B*3508 represents a critical feature for engagement of the public TcR, as the narrower binding cleft of HLA-B*3501(LPEPLPQGQLTAY), which differs from HLA-B*3508 by a single amino acid polymorphism (Arg156 --> Leu), interacted poorly with the dominant TcR. Biased TcR usage in this cytotoxic T lymphocyte response appears to reflect a dominant role of the prominent peptide x major histocompatibility complex class I surface.  相似文献   

4.
For more than 30 years, human leukocyte antigen B27 (HLA-B27) has been known to be closely related to the autoimmune disease ankylosing spondylitis, yet little is known about the molecular mechanisms of pathogenesis. Crystal structures of two closely related, but differently disease-associated, subtypes (B*2705 and B*2709) also did not resolve this situation as they revealed the bound nonapeptide in essentially identical conformations. As the peptide is part of putative binding epitopes for the T cell receptor, we performed molecular dynamics simulations to gain deeper insight into the dynamic behaviour of HLA-B27 molecules. We find increased flexibility of the peptide in the binding groove of subtype B*2709 due to weaker interactions in the F pocket. Possible implications of this flexibility for T cell recognition and signalling are discussed.Abbreviations 2m 2-microglobulin - AS ankylosing spondylitis - CDR complementarity determining region - HC heavy chain - HLA human leukocyte antigen - MD molecular dynamics - MHC major histocompatibility complex - pMHC peptide-loaded MHC - RMSD root mean square deviation - RMSF root mean square fluctuation - TCR T cell receptor An erratum to this article can be found at  相似文献   

5.
Human HLA-B*3501 binds an antigenic peptide of 14-aa length derived from an alternative reading frame of M-CSF with high affinity. Due to its extraordinary length, the exact HLA binding mode was unpredictable. The crystal structure of HLA-B*3501 at 1.5 A shows that the N and C termini of the peptide are embedded in the A and F pockets, respectively, similar to a peptide of normal length. The central part of the 14-meric peptide bulges flexibly out of the groove. Two variants of the alternative reading frame of M-CSF peptide substituted at P2 or P2 and P9 with Ala display weak or no T cell activation. Their structure differs mainly in flexibility and conformation from the agonistic peptide. Moreover, the variants induce subtle changes of MHC alpha-helical regions implicated as critical for TCR contact. The TCR specifically recognizing this peptide/MHC complex exhibits CDR3 length within the normal range, suggesting major conformational adaptations of this receptor upon peptide/MHC binding. Thus, the potential antigenic repertoire recognizable by CTLs is larger than currently thought.  相似文献   

6.
MHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag. The 11-mer determinant adopts a highly bulged conformation with seven of the peptide side chains being solvent-exposed and available for TCR interaction. Such a complex potentially creates a structural challenge for TCR corecognition of both HLA-B*3501 and the peptide Ag. Surprisingly, unrelated B*3501 donors recognizing the 11-mer use identical or closely related alphabeta TCR sequences that share particular CDR3 motifs. Within the small number of dominant CTL clonotypes observed, each has discrete fine specificity for the exposed side chain residues of the peptide. The data show that bulged viral peptides are indeed immunogenic but suggest that the highly constrained TCR repertoire reflects a limit to TCR diversity when responding to some unusual MHC peptide ligands.  相似文献   

7.
The keystone of the adaptive immune response is T cell receptor (TCR) recognition of peptide presented by major histocompatibility complex (pMHC) molecules. The crystal structure of AHIII TCR bound to MHC, HLA-A2, showed a large interface with an atypical binding orientation. MHC mutations in the interface of the proteins were tested for changes in TCR recognition. From the range of responses observed, three representative HLA-A2 mutants, T163A, W167A, and K66A, were selected for further study. Binding constants and co-crystal structures of the AHIII TCR and the three mutants were determined. K66 in HLA-A2 makes contacts with both peptide and TCR, and has been identified as a critical residue for recognition by numerous TCR. The K66A mutation resulted in the lowest AHIII T cell response and the lowest binding affinity, which suggests that the T cell response may correlate with affinity. Importantly, the K66A mutation does not affect the conformation of the peptide. The change in affinity appears to be due to a loss in hydrogen bonds in the interface as a result of a conformational change in the TCR complementarity-determining region 3 (CDR3) loop. Isothermal titration calorimetry confirmed the loss of hydrogen bonding by a large loss in enthalpy. Our findings are inconsistent with the notion that the CDR1 and CDR2 loops of the TCR are responsible for MHC restriction, while the CDR3 loops interact solely with the peptide. Instead, we present here an MHC mutation that does not change the conformation of the peptide, yet results in an altered conformation of a CDR3.  相似文献   

8.
Although the major histocompatibility complex class I (MHC-I) molecules typically bind short peptide (p) fragments (8-10 amino acids in length), longer, "bulged" peptides are often be presented by MHC-I. Such bulged pMHC-I complexes represent challenges for T-cell receptor (TCR) ligation, although the general principles underscoring the interaction between TCRs and bulged pMHC-I complexes are unclear. To address this, we have explored the energetic basis of how an immunodominant TCR (termed SB27) binds to a 13-amino acid viral peptide (LPEPLPQGQLTAY) complexed to human leukocyte antigen (HLA) B*3508. Using the crystal structure of the SB27 TCR-HLA B*3508(LPEP) complex as a guide, we undertook a comprehensive alanine-scanning mutagenesis approach at the TCR-pMHC-I interface and examined the effect of the mutations by biophysical (affinity measurements) and cellular approaches (tetramer staining). Although the structural footprint on HLA B*3508 was small, the energetic footprint was even smaller in that only two HLA B*3508 residues were critical for the TCR interaction. Instead, the energetic basis of this TCR-pMHC-I interaction was attributed to peptide-mediated interactions in which the complementarity determining region 3α and germline-encoded complementarity determining region 1β loops of the SB27 TCR played the principal role. Our findings highlight the peptide-centricity of TCR ligation toward a bulged pMHC-I complex.  相似文献   

9.
Human leukocyte antigen (HLA)-I molecules can present long peptides, yet the mechanisms by which T-cell receptors (TCRs) recognize featured pHLA-I landscapes are unclear. We compared the binding modes of three distinct human TCRs, CA5, SB27, and SB47, complexed with a “super-bulged” viral peptide (LPEPLPQGQLTAY) restricted by HLA-B*35:08. The CA5 and SB27 TCRs engaged HLA-B*35:08LPEP similarly, straddling the central region of the peptide but making limited contacts with HLA-B*35:08. Remarkably, the CA5 TCR did not contact the α1-helix of HLA-B*35:08. Differences in the CDR3β loop between the CA5 and SB27 TCRs caused altered fine specificities. Surprisingly, the SB47 TCR engaged HLA-B*35:08LPEP using a completely distinct binding mechanism, namely “bypassing” the bulged peptide and making extensive contacts with the extreme N-terminal end of HLA-B*35:08. This docking footprint included HLA-I residues not observed previously as TCR contact sites. The three TCRs exhibited differing patterns of alloreactivity toward closely related or distinct HLA-I allotypes. Thus, the human T-cell repertoire comprises a range of TCRs that can interact with “bulged” pHLA-I epitopes using unpredictable strategies, including the adoption of atypical footprints on the MHC-I.  相似文献   

10.
11.
The TCR recognizes its peptide:MHC (pMHC) ligand by assuming a diagonal orientation relative to the MHC helices, but it is unclear whether and to what degree individual TCRs exhibit docking variations when contacting similar pMHC complexes. We analyzed monospecific and cross-reactive recognition by diverse TCRs of an immunodominant HVH-1 glycoprotein B epitope (HSV-8p) bound to two closely related MHC class I molecules, H-2K(b) and H-2K(bm8). Previous studies indicated that the pMHC portion likely to vary in conformation between the two complexes resided at the N-terminal part of the complex, adjacent to peptide residues 2-4 and the neighboring MHC side chains. We found that CTL clones sharing TCR beta-chains exhibited disparate recognition patterns, whereas those with drastically different TCRbeta-chains but sharing identical TCRalpha CDR3 loops displayed identical functional specificity. This suggested that the CDRalpha3 loop determines the TCR specificity in our model, the conclusion supported by modeling of the TCR over the actual HSV-8:K(b) crystal structure. Importantly, these results indicate a remarkable conservation in CDRalpha3 positioning, and, therefore, in docking of diverse TCRalphabeta heterodimers onto variant peptide:class I complexes, implying a high degree of determinism in thymic selection and T cell activation.  相似文献   

12.
We report crystal structures of a negatively selected T cell receptor (TCR) that recognizes two I-Au-restricted myelin basic protein peptides and one of its peptide/major histocompatibility complex (pMHC) ligands. Unusual complementarity-determining region (CDR) structural features revealed by our analyses identify a previously unrecognized mechanism by which the highly variable CDR3 regions define ligand specificity. In addition to the pMHC contact residues contributed by CDR3, the CDR3 residues buried deep within the Vα/Vβ interface exert indirect effects on recognition by influencing the Vα/Vβ interdomain angle. This phenomenon represents an additional mechanism for increasing the potential diversity of the TCR repertoire. Both the direct and indirect effects exerted by CDR residues can impact global TCR/MHC docking. Analysis of the available TCR structures in light of these results highlights the significance of the Vα/Vβ interdomain angle in determining specificity and indicates that TCR/pMHC interface features do not distinguish autoimmune from non-autoimmune class II-restricted TCRs.  相似文献   

13.
T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.  相似文献   

14.
A CTL clone that recognizes autologous tumor cells was previously isolated from the blood of a head-and-neck cancer patient. The Ag was identified as peptide FPSDSWCYF presented by autologous HLA-B*3503 molecules. This peptide was encoded by a mutated CASP-8 gene, which is implicated in the triggering of apoptosis. Here, we show that this CTL clone, which expresses a single TCR, also recognizes two unrelated peptides on allogeneic HLA-B*3501 molecules. One peptide, HIPDVITY, is encoded by squalene synthase, and the other one, QFADVIVLF, is encoded by 2-hydroxyphytanoyl-CoA lyase. Both genes are expressed ubiquitously. These antigenic peptides are processed and presented by HLA-B*3501 cells. The two HLA-B35 alleles are closely related. Our results might reinforce the notion that the recognition of allogeneic HLA molecules depends on the presence in their groove of a limited number of peptides processed from ubiquitous proteins.  相似文献   

15.
Crystallographic studies have suggested that the cysteine at position 67 (Cys(67)) in the B pocket of the MHC molecule HLA-B*2705 is of importance for peptide binding, and biophysical studies have documented altered thermodynamic stability of the molecule when Cys(67) was mutated to serine (Ser(67)). In this study, we used HLA-B27.Cys(67) and HLA-B27.Ser(67) tetramers with defined T cell epitopes to determine the contribution of this polymorphic, solvent-inaccessible MHC residue to T cell recognition. We generated these HLA-B27 tetramers using immunodominant viral peptides with high binding affinity to HLA-B27 and cartilage-derived peptides with lower affinity. We demonstrate that the yield of refolding of HLA-B27.Ser(67) molecules was higher than for HLA-B27.Cys(67) molecules and strongly dependent on the affinity of the peptide. T cell recognition did not differ between HLA-B27.Cys(67) and HLA.B27.Ser(67) tetramers for the viral peptides that were investigated. However, an aggrecan peptide-specific T cell line derived from an HLA-B27 transgenic BALB/c mouse bound significantly stronger to the HLA-B27.Cys(67) tetramer than to the HLA-B27.Ser(67) tetramer. Modeling studies of the molecular structure suggest the loss of a SH ... pi hydrogen bond with the Cys-->Ser substitution in the HLA-B27 H chain which reduces the stability of the HLA-B27/peptide complex. These results demonstrate that a solvent-inaccessible residue in the B pocket of HLA-B27 can affect TCR binding in a peptide-dependent fashion.  相似文献   

16.
An interesting property of certain peptides presented by major histocompatibility complex (MHC) molecules is their acquisition of a dual binding mode within the peptide binding groove. Using x-ray crystallography at 1.4 A resolution, we show here that the glucagon receptor-derived self-peptide pGR ((412)RRRWHRWRL(420)) is presented by the disease-associated human MHC class I subtype HLA-B*2705 in a dual conformation as well, with the middle of the peptide bent toward the floor of the peptide binding groove of the molecule in both binding modes. The conformations of pGR are compared here with those of another self-peptide (pVIPR, RRKWRRWHL) that is also displayed in two binding modes by HLA-B*2705 antigens and with that of the viral peptide pLMP2 (RRRWRRLTV). Conserved structural features suggest that the N-terminal halves of the peptides are crucial in allowing cytotoxic T lymphocyte (CTL) cross-reactivity. In addition, an analysis of T cell receptors (TCRs) from pGR- or pVIPR-directed, HLA-B27-restricted CTL clones demonstrates that TCR from distinct clones but with comparable reactivity may share CDR3alpha but not CDR3beta regions. Therefore, the cross-reactivity of these CTLs depends on TCR-CDR3alpha, is modulated by TCR-CDR3beta sequences, and is ultimately a consequence of the conformational dimorphism that characterizes binding of the self-peptides to HLA-B*2705. These results lend support to the concept that conformational dimorphisms of MHC class I-bound peptides might be connected with the occurrence of self-reactive CTL.  相似文献   

17.
Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.  相似文献   

18.
αβ T-cell receptors (TCRs) engage antigens using complementarity-determining region (CDR) loops that are either germ line-encoded (CDR1 and CDR2) or somatically rearranged (CDR3). TCR ligands compose a presentation platform (major histocompatibility complex (MHC)) and a variable antigenic component consisting of a short “foreign” peptide. The sequence of events when the TCR engages its peptide-MHC (pMHC) ligand remains unclear. Some studies suggest that the germ line elements of the TCR engage the MHC prior to peptide scanning, but this order of binding is difficult to reconcile with some TCR-pMHC structures. Here, we used TCRs that exhibited enhanced pMHC binding as a result of mutations in either CDR2 and/or CDR3 loops, that bound to the MHC or peptide, respectively, to dissect the roles of these loops in stabilizing TCR-pMHC interactions. Our data show that TCR-peptide interactions play a strongly dominant energetic role providing a binding mode that is both temporally and energetically complementary with a system requiring positive selection by self-pMHC in the thymus and rapid recognition of non-self-pMHC in the periphery.  相似文献   

19.
Stavrakoudis A 《FEBS letters》2011,585(3):837-491
The Epstein–Barr virus determinant peptide EENLLDFVRF shows high immunogenicity when presented by HLA-B*4405 allotype. This fact is accompanied by a cistrans isomerization of the Leu5-Asp6 peptide bond upon TCR binding of the pMHC complex. Molecular dynamics simulations of pMHC/TCR structures, with the EENLLDFVRF peptide in cis and trans conformations have been employed in order to examine the structure and dynamics of the pMHC complex with such an unusual conformation. The results, based on MM-PBSA free energy computations as well as buried surface area analysis and interactions at the pMHC/TCR interface, indicate that the TCR binds preferably the pMHC complex with the Leu5-Asp6 peptide bond in cis conformation. It is the first time that this notable conformational feature of T-cell epitope is investigated.  相似文献   

20.
One key step in the immune response against infected or tumor cells is the recognition of the T-cell receptor (TCR) by class I major histocompatibility complexes. The complex between the HLA-B8 molecule and the immunodominant peptide with sequence FLRGRAYGL, derived from the Epstein-Barr virus, with the LC13 TCR has been determined by X-ray diffraction. The complex has been used as a starting point in a molecular dynamics study in order to investigate the dynamics of the complex association and to explore the specific interactions of the complex formation. The analyzed structures provided evidence that the peptide adopts an open type β-turn conformation close to C-terminal part, which dominates peptide/TCR interactions. Conformational energy landscape analysis indicated the presence of two conformational clusters in the peptide’s structure, underlying the backbone flexibility of the peptide despite being surrounded by two receptors. The peptide/MHC/TCR interface was found to hold significant number of solvent molecules, more specifically the peptide has been found to have approximately seventeen hydrogen bonds with water molecules. The molecular dynamics simulation indicated the disruption of some MHC/TCR contacts, mainly with the CDR1α loop. However, several other interactions emerged that resulted in a stable association during the 20 ns trajectory, as revealed by the buried surface area analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号