首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionarily conserved DnaJ proteins are essential components of Hsp70 chaperone systems. The DnaJ homologue of Escherichia coli associates with chaperone substrates and mediates their ATP hydrolysis-dependent locking into the binding cavity of its Hsp70 partner, DnaK. To determine the substrate specificity of DnaJ proteins, we screened 1633 peptides derived from 14 protein sequences for binding to E.coli DnaJ. The binding motif of DnaJ consists of a hydrophobic core of approximately eight residues enriched for aromatic and large aliphatic hydrophobic residues and arginine. The hydrophobicity of this motif explains why DnaJ itself can prevent protein aggregation. Although this motif shows differences from DnaK's binding motif, DnaJ and DnaK share the majority of binding peptides. In contrast to DnaK, DnaJ binds peptides consisting of L- and D-amino acids, and therefore is not restricted by backbone contacts. These features allow DnaJ to scan hydrophobic protein surfaces and initiate the functional cycle of the DnaK system by associating with hydrophobic exposed patches and subsequent targeting of DnaK to these or to hydrophobic patches in spatial neighbourhood.  相似文献   

2.
The Hsp70-class molecular chaperone HscA interacts specifically with a conserved (99)LPPVK(103) motif of the iron-sulfur cluster scaffold protein IscU. We used a cellulose-bound peptide array to perform single-site saturation substitution of peptide residues corresponding to Glu(98)-Ile(104) of IscU to determine positional amino acid requirements for recognition by HscA. Two mutant chaperone forms, HscA(F426A) with a DnaK-like arch structure and HscA(M433V) with a DnaK-like substrate-binding pocket, were also studied. Wild-type HscA and HscA(F426A) exhibited a strict preference for proline in the central peptide position (ELPPVKI), whereas HscA(M433V) bound a peptide containing a Pro-->Leu substitution at this location (ELPLVKI). Contributions of Phe(426) and Met(433) to HscA peptide specificity were further tested in solution using a fluorescence-based peptide-binding assay. Bimane-labeled HscA and HscA(F426A) bound ELPPVKI peptides with higher affinity than leucine-substituted peptides, whereas HscA(M433V) favored binding of ELPLVKI peptides. Fluorescence-binding studies were also carried out with derivatives of the peptide NRLLLTG, a model substrate for DnaK. HscA and HscA(F426A) bound NRLLLTG peptides weakly, whereas HscA(M433V) bound NRLLLTG peptides with higher affinity than IscU-derived peptides ELPPVKI and ELPLVKI. These results suggest that the specificity of HscA for the LPPVK recognition sequence is determined in part by steric obstruction of the hydrophobic binding pocket by Met(433) and that substitution with the Val(433) sidechain imparts a broader, more DnaK-like, substrate recognition pattern.  相似文献   

3.
The 70 kDa heat shock proteins (the Hsp70 family) assist refolding of their substrates through ATP-controlled binding. We have analyzed mutants of DnaK, an Hsp70 homolog, altered in key residues of its substrate binding domain. Substrate binding occurs by a dynamic mechanism involving: a hydrophobic pocket for a single residue that is crucial for affinity, a two-layered closing device involving independent action of an alpha-helical lid and an arch, and a superimposed allosteric mechanism of ATP-controlled opening of the substrate binding cavity that operates largely through a beta-structured subdomain. Correlative evidence from mutational analysis suggests that the ADP and ATP states of DnaK differ in the frequency of the conformational changes in the alpha-helical lid and beta-domain that cause opening of the substrate binding cavity. The affinity for substrates, as defined by this mechanism, determines the efficiency of DnaJ-mediated and ATP hydrolysis mediated locking-in of substrates and chaperone activity of DnaK.  相似文献   

4.
The Hsp70 family of molecular chaperones participates in a number of cellular processes, including binding to nascent polypeptide chains and assistance in protein (re)folding and degradation. We present the solution structure of the substrate binding domain (residues 393-507) of the Escherichia coli Hsp70, DnaK, that is bound to the peptide NRLLLTG and compare it to the crystal structure of DnaK(389-607) bound to the same peptide. The construct discussed here does not contain the alpha-helical domain that characterizes earlier published peptide-bound structures of the Hsp70s. It is established that removing the alpha-helical domain in its entirety does not affect the primary interactions or structure of the DnaK(393-507) in complex with the peptide NRLLLTG. In particular, the arch that protects the substrate-binding cleft is also formed in the absence of the helical lid. 15N-relaxation measurements show that the peptide-bound form of DnaK(393-507) is relatively rigid. As compared to the peptide-free state, the peptide-bound state of the domain shows distinct, widespread, and contiguous differences in structure extending toward areas previously defined as important to the allosteric regulation of the Hsp70 chaperones.  相似文献   

5.
Members of the Hsp70 (heat-shock protein of 70 kDa) family of molecular chaperones bind to exposed hydrophobic stretches on substrate proteins in order to dissociate molecular complexes and prevent aggregation in the cell. Substrate affinity for the C-terminal domain of the Hsp70 is regulated by ATP binding to the N-terminal domain utilizing an allosteric mechanism. Our multi-dimensional NMR studies of a substrate-binding domain fragment (amino acids 387-552) from an Escherichia coli Hsp70, DnaK(387-552), have uncovered a pH-dependent conformational change, which we propose to be relevant for the full-length protein also. At pH 7, the C-terminus of DnaK(387-552) mimics substrate by binding to its own substrate-binding site, as has been observed previously for truncated Hsp70 constructs. At pH 5, the C-terminus is released from the binding site, such that DnaK is in the substrate-free state 10-20% of the time. We propose that the mechanism for the release of the tail is a loss of affinity for substrate at low pH. The pH-dependent fluorescence changes at a tryptophan residue near the substrate-binding pocket in full-length DnaK lead us to extend these conclusions to the full-length DnaK as well. In the context of the DnaK substrate-binding domain fragment, the release of the C-terminus from the substrate-binding site provides our first glimpse of the empty conformation of an Hsp70 substrate-binding domain containing a portion of the helical subdomain.  相似文献   

6.
Hsp70 chaperones assist in protein folding, disaggregation, and membrane translocation by binding to substrate proteins with an ATP-regulated affinity that relies on allosteric coupling between ATP-binding and substrate-binding domains. We have studied single- and two-domain versions of the E. coli Hsp70, DnaK, to explore the mechanism of interdomain communication. We show that the interdomain linker controls ATPase activity by binding to a hydrophobic cleft between subdomains IA and IIA. Furthermore, the domains of DnaK dock only when ATP binds and behave independently when ADP is bound. Major conformational changes in both domains accompany ATP-induced docking: of particular importance, some regions of the substrate-binding domain are stabilized, while those near the substrate-binding site become destabilized. Thus, the energy of ATP binding is used to form a stable interface between the nucleotide- and substrate-binding domains, which results in destabilization of regions of the latter domain and consequent weaker substrate binding.  相似文献   

7.
Hsp70-class molecular chaperones interact with diverse polypeptide substrates, but there is limited information on the structures of different Hsp70-peptide complexes. We have used a site-directed fluorescence labeling and quenching strategy to investigate the orientation of different peptides bound to DnaK from Escherichia coli. DnaK was selectively labeled on opposite sides of the substrate-binding domain (SBD) with the fluorescent probe bimane, and the ability of peptides containing N- or C-terminal tryptophan residues to quench bimane fluorescence was measured. Tryptophan-labeled derivatives of the model peptide NRLLLTG bound with the same forward orientation previously observed in the crystal structure of the DnaK(SBD)-NRLLLTG complex. Derivatives of this peptide containing arginine in the C-terminal rather than N-terminal region, NTLLLRG, also bound in the forward direction indicating that charged residues in the flanking regions of the peptide are not the major determinant of peptide binding orientation. We also tested peptides having proline in one (ELPLVKI) or two (ELPPVKI) central positions. Tryptophan derivatives of each of these peptides bound with a strong preference for the reverse direction relative to that observed for the NRLLLTG and NTLLLRG peptides. Computer modeling the peptides NRLLLTG and ELPPVKI in both the forward and reverse orientations into the DnaK(SBD) indicated that differential hydrogen-bonding patterns and steric constraints of the central peptide residues are likely causes for differences in their binding orientations. These findings establish that DnaK is able to bind substrates in both forward and reverse orientations and suggest that the central residues of the peptide are the major determinants of directional preference.  相似文献   

8.
To help cells cope with protein misfolding and aggregation, Hsp70 molecular chaperones selectively bind a variety of sequences (“selective promiscuity”). Statistical analyses from substrate-derived peptide arrays reveal that DnaK, the E. coli Hsp70, binds to sequences containing three to five branched hydrophobic residues, although otherwise the specific amino acids can vary considerably. Several high-resolution structures of the substrate -binding domain (SBD) of DnaK bound to peptides reveal a highly conserved configuration of the bound substrate and further suggest that the substrate-binding cleft consists of five largely independent sites for interaction with five consecutive substrate residues. Importantly, both substrate backbone orientations (N- to C- and C- to N-) allow essentially the same backbone hydrogen-bonding and side-chain interactions with the chaperone. In order to rationalize these observations, we performed atomistic molecular dynamics simulations to sample the interactions of all 20 amino acid side chains in each of the five sites of the chaperone in the context of the conserved substrate backbone configurations. The resulting interaction energetics provide the basis set for deriving a predictive model that we call Paladin (Physics-based model of DnaK-Substrate Binding). Trained using available peptide array data, Paladin can distinguish binders and nonbinders of DnaK with accuracy comparable to existing predictors and further predicts the detailed configuration of the bound sequence. Tested using existing DnaK-peptide structures, Paladin correctly predicted the binding register in 10 out of 13 substrate sequences that bind in the N- to C- orientation, and the binding orientation in 16 out of 22 sequences. The physical basis of the Paladin model provides insight into the origins of how Hsp70s bind substrates with a balance of selectivity and promiscuity. The approach described here can be extended to other Hsp70s where extensive peptide array data is not available.  相似文献   

9.
In the DnaK (Hsp70) molecular chaperone system of Escherichia coli, the substrate polypeptide is fed into the chaperone cycle by association with the fast-binding, ATP-liganded form of the DnaK. The substrate binding properties of DnaK are controlled by its two cochaperones DnaJ (Hsp40) and GrpE. DnaJ stimulates the hydrolysis of DnaK-bound ATP, and GrpE accelerates ADP/ATP exchange. DnaJ has been described as targeting the substrate to DnaK, a concept that has remained rather obscure. Based on binding experiments with peptides and polypeptides we propose here a novel mechanism for the targeting action of DnaJ: ATP.DnaK and DnaJ with its substrate-binding domain bind to different segments of one and the same polypeptide chain forming (ATP.DnaK)m.substrate.DnaJn complexes; in these ternary complexes efficient cis-interaction of the J-domain of DnaJ with DnaK is favored by their propinquity and triggers the hydrolysis of DnaK-bound ATP, converting DnaK to its ADP-liganded high affinity state and thus locking it onto the substrate polypeptide.  相似文献   

10.
Vega CA  Kurt N  Chen Z  Rüdiger S  Cavagnero S 《Biochemistry》2006,45(46):13835-13846
Hsp70 chaperones are involved in the prevention of misfolding, and possibly the folding, of newly synthesized proteins. The members of this chaperone family are capable of interacting with polypeptide chains both co- and posttranslationally, but it is currently not clear how different structural domains of the chaperone affect binding specificity. We explored the interactions between the bacterial Hsp70, DnaK, and the sequence of a model all-alpha-helical globin (apoMb) by cellulose-bound peptide scanning. The binding specificity of the full-length chaperone was compared with that of its minimal substrate-binding domain, DnaK-beta. Six specific chaperone binding sites evenly distributed along the apoMb sequence were identified. Binding site locations are identical for the full-length chaperone and its substrate-binding domain, but relative affinities differ. The binding specificity of DnaK-beta is only slightly decreased relative to that of full-length DnaK. DnaK's binding motif is known to comprise hydrophobic regions flanked by positively charged residues. We found that the simple fractional mean buried area correlates well with Hsp70's binding site locations along the apoMb sequence. In order to further characterize the properties of the minimal binding host, the stability of DnaK-beta upon chemical denaturation by urea and protons was investigated. Urea unfolding titrations yielded an apparent folding DeltaG degrees of 3.1 +/- 0.9 kcal mol-1 and an m value of 1.7 +/- 0.4 kcal mol-1 M-1.  相似文献   

11.
The three-dimensional structure for the substrate-binding domain of the mammalian chaperone protein Hsc70 of the 70 kDa heat shock class (HSP70) is presented. This domain includes residues 383-540 (18 kDa) and is necessary for the binding of the chaperone with substrate proteins and peptides. The high-resolution NMR solution structure is based on 4150 experimental distance constraints leading to an average root-mean-square precision of 0.38 A for the backbone atoms and 0.76 A for all atoms in the beta-sandwich sub-domain. The protein is observed to bind residue Leu539 in its hydrophobic substrate-binding groove by intramolecular interaction. The position of a helical latch differs dramatically from what is observed in the crystal and solution structures of the homologous prokaryotic chaperone DnaK. In the Hsc70 structure, the helix lies in a hydrophobic groove and is anchored by a buried salt-bridge. Residues involved in this salt-bridge appear to be important for the allosteric functioning of the protein. A mechanism for interdomain allosteric modulation of substrate-binding is proposed. It involves large-scale movements of the helical domain, redefining the location of the hinge area that enables such motions.  相似文献   

12.
The first discovery of an Hsp70 chaperone gene was the isolation of an Escherichia coli mutant, dnaK756, which rendered the cells resistant to lytic infection with bacteriophage lambda. The DnaK756 mutant protein has since been used to establish many of the cellular roles and biochemical properties of DnaK. DnaK756 has three glycine-to-aspartate substitutions at residues 32, 455, and 468, which were reported to result in defects in intrinsic and GrpE-stimulated ATPase activities, substrate binding, stability of the substrate-binding domain, interdomain communication, and, consequently, defects in chaperone activity. To dissect the effects of the different amino acid substitutions in DnaK756, we analyzed two DnaK variants carrying only the amino-terminal (residue 32) or the two carboxyl-terminal (residues 455 and 468) substitutions. The amino-terminal substitution interfered with the GrpE-stimulated ATPase activity. The carboxyl-terminal mutations (i) affected stability and function of the substrate-binding domain, (ii) caused a 10-fold elevated ATP hydrolysis rate, but (iii) did not severely affect domain coupling. Surprisingly, DnaK chaperone activity was more severely compromised by the amino-terminal than by the carboxyl-terminal amino acid substitutions both in vivo and in vitro. In the in vitro refolding of denatured firefly luciferase, the defect of the DnaK variant carrying the amino-terminal substitution results from its inability to release, upon GrpE-mediated nucleotide exchange, bound luciferase in a folding competent state. Our results indicate that the DnaK-DnaJ-GrpE chaperone system can tolerate suboptimal substrate binding, whereas the tight kinetic control of substrate dissociation by GrpE is essential.  相似文献   

13.
Hsp70 chaperones assist protein folding through ATP-regulated transient association with substrates. Substrate binding by Hsp70 is controlled by DnaJ co-chaperones which stimulate Hsp70 to hydrolyze ATP and, consequently, to close its substrate binding cavity allowing trapping of substrates. We analyzed the interaction of the Escherichia coli Hsp70 homologue, DnaK, with DnaJ using surface plasmon resonance (SPR) spectroscopy. Resonance signals of complex kinetic characteristics were detected when DnaK was passed over a sensor chip with coupled DnaJ. This interaction was specific as it was not detected with a functionally defective DnaJ mutant protein, DnaJ259, that carries a mutation in the HPD signature motif of the conserved J-domain. Detectable DnaK-DnaJ interaction required ATP hydrolysis by DnaK and was competitively inhibited by chaperone substrates of DnaK. For DnaK mutant proteins with amino acid substitutions in the substrate binding cavity that affect substrate binding, the strength of detected interaction with DnaJ decreased proportionally with increased strength of the substrate binding defects. These findings indicate that the detected response signals resulted from DnaJ and ATP hydrolysis-dependent association of DnaJ as substrate for DnaK. Although not considered as physiologically relevant, this association allowed us to experimentally unravel the mechanism of DnaJ action. Accordingly, DnaJ stimulates ATP hydrolysis only after association of a substrate with the substrate binding cavity of DnaK. Further analysis revealed that this coupling mechanism required the J-domain of DnaJ and was also functional for natural DnaK substrates, and thus is central to the mechanism of action of the DnaK chaperone system.  相似文献   

14.
Hsp70 chaperones assist protein folding by ATP-dependent association with linear peptide segments of a large variety of folding intermediates. The molecular basis for this ability to differentiate between native and non-native conformers was investigated for the DnaK homolog of Escherichia coli. We identified binding sites and the recognition motif in substrates by screening 4360 cellulose-bound peptides scanning the sequences of 37 biologically relevant proteins. DnaK binding sites in protein sequences occurred statistically every 36 residues. In the folded proteins these sites are mostly buried and in the majority found in beta-sheet elements. The binding motif consists of a hydrophobic core of four to five residues enriched particularly in Leu, but also in Ile, Val, Phe and Tyr, and two flanking regions enriched in basic residues. Acidic residues are excluded from the core and disfavored in flanking regions. The energetic contribution of all 20 amino acids for DnaK binding was determined. On the basis of these data an algorithm was established that predicts DnaK binding sites in protein sequences with high accuracy.  相似文献   

15.
HscA, a specialized bacterial Hsp70-class molecular chaperone, interacts with the iron-sulfur cluster assembly protein IscU by recognizing a conserved LPPVK sequence motif. We report the crystal structure of the substrate-binding domain of HscA (SBD, residues 389-616) from Escherichia coli bound to an IscU-derived peptide, ELPPVKIHC. The crystals belong to the space group I222 and contain a single molecule in the asymmetric unit. Molecular replacement with the E.coli DnaK(SBD) model was used for phasing, and the HscA(SBD)-peptide model was refined to Rfactor=17.4% (Rfree=21.0%) at 1.95 A resolution. The overall structure of HscA(SBD) is similar to that of DnaK(SBD), although the alpha-helical subdomain (residues 506-613) is shifted up to 10 A relative to the beta-sandwich subdomain (residues 389-498) when compared to DnaK(SBD). The ELPPVKIHC peptide is bound in an extended conformation in a hydrophobic cleft in the beta-subdomain, which appears to be solvent-accessible via a narrow passageway between the alpha and beta-subdomains. The bound peptide is positioned in the reverse orientation of that observed in the DnaK(SBD)-NRLLLTG peptide complex placing the N and C termini of the peptide on opposite sides of the HscA(SBD) relative to the DnaK(SBD) complex. Modeling of the peptide in the DnaK-like forward orientation suggests that differences in hydrogen bonding interactions in the binding cleft and electrostatic interactions involving surface residues near the cleft contribute to the observed directional preference.  相似文献   

16.
17.
The Hsp70 family of molecular chaperones acts to prevent protein misfolding, import proteins into organelles, unravel protein aggregates, and enhance cell survival under stress conditions. These activities are all mediated by recognition of diverse hydrophobic sequences via a C-terminal substrate-binding domain. ATP-binding/hydrolysis by the N-terminal ATPase domain regulates the interconversion of the substrate-binding domain between low and high affinity conformations. The empty state of the substrate-binding domain has been difficult to study because of its propensity to bind nearly any available protein chain, even if only modestly hydrophobic. We have generated a new stable construct of the substrate-binding domain from the Escherichia coli Hsp70, DnaK, which has enabled us to compare the empty and peptide-bound conformations using NMR chemical shift analysis and hydrogen-deuterium exchange. We have determined that the empty state is, overall, quite similar to the peptide-bound state, contrary to a previous report. Peptide binding leads to a subtle alteration in the packing of the alpha-helical lid relative to the beta-subdomain. Significantly, we have shown that the chemical shifts of the substrate-binding domain and the ATPase domain do not change when they are placed together in a two-domain construct, whether or not peptide is bound, suggesting that, in the absence of nucleotide, the two domains of E. coli DnaK do not interact. We conclude that the isolated substrate-binding domain exists in a stable high affinity state in the absence of influence from a nucleotide-bound ATPase domain.  相似文献   

18.
Hsp70 chaperones keep protein homeostasis facilitating the response of organisms to changes in external and internal conditions. Hsp70s have two domains—nucleotide binding domain (NBD) and substrate binding domain (SBD)—connected by a conserved hydrophobic linker. Functioning of Hsp70s depend on tightly regulated cycles of ATP hydrolysis allosterically coupled, often together with cochaperones, to the binding/release of peptide substrates. Here we describe the crystal structure of the Mycoplasma genitalium DnaK (MgDnaK) protein, an Hsp70 homolog, in the noncompact, nucleotide‐bound/substrate‐bound conformation. The MgDnaK structure resembles the one from the thermophilic eubacteria DnaK trapped in the same state. However, in MgDnaK the NBD and SBD domains remain close to each other despite the lack of direct interaction between them and with the linker contacting the two subdomains of SBD. These observations suggest that the structures might represent an intermediate of the protein where the conserved linker binds to the SBD to favor the noncompact state of the protein by stabilizing the SBDβ‐SBDα subdomains interaction, promoting the capacity of the protein to sample different conformations, which is critical for proper functioning of the molecular chaperone allosteric mechanism. Comparison of the solved structures indicates that the NBD remains essentially invariant in presence or absence of nucleotide.  相似文献   

19.
DnaK, the bacterial homolog of human Hsp70, plays an important role in pathogens survival under stress conditions, like antibiotic therapies. This chaperone sequesters protein aggregates accumulated in bacteria during antibiotic treatment reducing the effect of the cure. Although different classes of DnaK inhibitors have been already designed, they present low specificity. DnaK is highly conserved in prokaryotes (identity 50–70%), which encourages the development of a unique inhibitor for many different bacterial strains. We used the DnaK of Acinetobacter baumannii as representative for our analysis, since it is one of the most important opportunistic human pathogens, exhibits a significant drug resistance and it has the ability to survive in hospital environments. The E.coli DnaK was also included in the analysis as reference structure due to its wide diffusion. Unfortunately, bacterial DnaK and human Hsp70 have an elevated sequence similarity. Therefore, we performed a differential analysis of DnaK and Hsp70 residues to identify hot spots in bacterial proteins that are not present in the human homolog, with the aim of characterizing the key pharmacological features necessary to design selective inhibitors for DnaK. Different conformations of DnaK and Hsp70 bound to known inhibitor-peptides for DnaK, and ineffective for Hsp70, have been analysed by molecular dynamics simulations to identify residues displaying stable and selective interactions with these peptides. Results achieved in this work show that there are some residues that can be used to build selective inhibitors for DnaK, which should be ineffective for the human Hsp70.  相似文献   

20.
We have analyzed the interaction of DnaK and plant Hsp70 proteins with the wild-type ferredoxin-NADP+ reductase precursor (preFNR) and mutants containing amino-acid replacements in the targeting sequence. Using an algorithm already developed [Rüdiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. (1997) EMBO J. 16, 1501-1507] we observed that 75% of the 727 plastid precursor proteins analyzed contained at least one site with high likelihood of DnaK binding in their transit peptides. Statistical analysis showed a decrease of DnaK binding site frequency within the first 15 amino-acid residues of the transit peptides. Using fusion proteins we detected the interaction of DnaK with the transit peptide of the folded preFNR but not with the mature region of the protein. Discharge of DnaK from the presequence was favored by addition of MgATP. When a putative DnaK binding site was artificially added at the N-terminus of the mature protein, we observed formation of complexes with bacterial and plant Hsp70 molecular chaperones. Reducing the likelihood of DnaK binding by directed mutagenesis of the presequence increased the release of bound DnaK. The Hsp70 proteins from plastids and plant cell cytosol also interacted with the preFNR transit peptide. Overall results are discussed in the context of the proposed models to explain the organelle protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号