首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fluorescence of quinolinium-basedCl indicators such as6-methoxy-N-(3-sulfopropyl)quinolinium(SPQ) is quenched by Cl bya collisional mechanism without change in spectral shape. A series of"chimeric" dual-wavelengthCl indicators weresynthesized by conjugatingCl-sensitive and-insensitive chromophores with spacers. The SPQ chromophore(N-substituted 6-methoxyquinolinium; MQ) was selected as theCl-sensitive moiety[excitation wavelength(ex) 350 nm, emission wavelength (em) 450 nm]. N-substituted 6-aminoquinolinium (AQ) waschosen as theCl-insensitive moietybecause of its different spectral characteristics (ex 380 nm,em 546 nm), insensitivity toCl, positive charge (tominimize quenching by chromophore stacking/electron transfer), andreducibility (for noninvasive cell loading). The dual-wavelengthindicators were stable and nontoxic in cells and were distributeduniformly in cytoplasm, with occasional staining of the nucleus. Thebrightest and mostCl-sensitive indicatorswere -MQ-'-dimethyl-AQ-xylene dichloride andtrans-1,2-bis(4-[1-'-MQ-1'-'-dimethyl-AQ-xylyl]-pyridinium)ethylene (bis-DMXPQ). At 365-nm excitation, emission maxima were at 450 nm(Cl sensitive; Stern-Volmerconstants 82 and 98 M1)and 565 nm (Clinsensitive). Cystic fibrosis transmembrane conductanceregulator-expressing Swiss 3T3 fibroblasts were labeled with bis-DMXPQby hypotonic shock or were labeled with its uncharged reduced form(octahydro-bis-DMXPQ) by brief incubation (20 µM, 10 min). Changes inCl concentration inresponse to Cl/nitrateexchange were recorded by emission ratio imaging (450/565 nm) at 365-nmexcitation wavelength. These results establish a first-generation setof chimeric bisquinoliniumCl indicators forratiometric measurement ofCl concentration.  相似文献   

2.
Previous data indicate that adenosine 3',5'-cyclicmonophosphate activates the epithelial basolateralNa+-K+-Clcotransporter in microfilament-dependent fashion in part by direct action but also in response to apicalCl loss (due to cellshrinkage or decreased intracellularCl). To further addressthe actin dependence ofNa+-K+-Clcotransport, human epithelial T84 monolayers were exposed to anisotonicity, and isotopic flux analysis was performed.Na+-K+-Clcotransport was activated by hypertonicity induced by added mannitol but not added NaCl. Cotransport was also markedly activated by hypotonic stress, a response that appeared to be due in part to reduction of extracellularCl concentration and alsoto activation of K+ andCl efflux pathways.Stabilization of actin with phalloidin blunted cotransporter activationby hypotonicity and abolished hypotonic activation ofK+ andCl efflux. However,phalloidin did not prevent activation of cotransport by hypertonicityor isosmotic reduction of extracellularCl. Conversely, hypertonicbut not hypotonic activation was attenuated by the microfilamentdisassembler cytochalasin D. The results emphasize the complexinterrelationship among intracellularCl activity, cell volume,and the actin cytoskeleton in the regulation of epithelialCl transport.

  相似文献   

3.
Alterations in the competency of the creatine kinase systemelicit numerous structural and metabolic compensations, including changes in purine nucleotide metabolism. We evaluated molecular andkinetic changes in AMP deaminase from skeletal muscles of micedeficient in either cytosolic creatine kinase alone(M-CK/) or alsodeficient in mitochondrial creatine kinase(CK/) comparedwith wild type. We found that predominantly fast-twitch muscle, but notslow-twitch muscle, from bothM-CK/ andCK/ mice had muchlower AMP deaminase; the quantity of AMP deaminase detected by Westernblot was correspondingly lower, whereas AMP deaminase-1(AMPD1) gene expressionwas unchanged. Kinetic analysis of AMP deaminase from mixed musclerevealed negative cooperativity that was significantly greater increatine kinase deficiencies. Treatment of AMP deaminase with acidphosphatase abolished negative cooperative behavior, indicating that aphosphorylation-dephosphorylation cycle may be important in theregulation of AMP deaminase.

  相似文献   

4.
Cystic fibrosis iscaused by mutations in the cystic fibrosis transmembrane conductanceregulator (CFTR) Clchannel, which mediates transepithelialCl transport in a varietyof epithelia, including airway, intestine, pancreas, and sweat duct. Insome but not all epithelial cells, cAMP stimulatesCl secretion in part byincreasing the number of CFTRCl channels in the apicalplasma membrane. Because the mechanism whereby cAMP stimulates CFTRCl secretion is cell-typespecific, our goal was to determine whether cAMP elevates CFTR-mediatedCl secretion across serousairway epithelial cells by stimulating the insertion of CFTRCl channels from anintracellular pool into the apical plasma membrane. To this end westudied Calu-3 cells, a human airway cell line with a serous cellphenotype. Serous cells in human airways, such as Calu-3 cells, expresshigh levels of CFTR, secrete antibiotic-rich fluid, and play a criticalrole in airway function. Moreover, dysregulation of CFTR-mediatedCl secretion in serouscells is thought to contribute to the pathophysiology of cysticfibrosis lung disease. We report that cAMP activation of CFTR-mediatedCl secretion across humanserous cells involves stimulation of CFTR channels present in theapical plasma membrane and does not involve the recruitment of CFTRfrom an intracellular pool to the apical plasma membrane.

  相似文献   

5.
Thickening of airway mucus and lungdysfunction in cystic fibrosis (CF) results, at least in part, fromabnormal secretion of Cl and HCO3across the tracheal epithelium. The mechanism of the defect in HCO3 secretion is ill defined; however, a lack ofapical Cl/HCO3 exchange may exist inCF. To test this hypothesis, we examined the expression ofCl/HCO3 exchangers in trachealepithelial cells exhibiting physiological features prototypical ofcystic fibrosis [CFT-1 cells, lacking a functional cystic fibrosistransmembrane conductance regulator (CFTR)] or normal trachea (CFT-1cells transfected with functional wild-type CFTR, termed CFT-WT). Cellswere grown on coverslips and were loaded with the pH-sensitive dye2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, andintracellular pH was monitored. Cl/HCO3exchange activity increased by ~300% in cells transfected with functional CFTR, with activities increasing from 0.034 pH/min in CFT-1cells to 0.11 in CFT-WT cells (P < 0.001, n = 8). This activity was significantly inhibited byDIDS. The mRNA expression of the ubiquitous basolateral AE-2Cl/HCO3 exchanger remained unchanged.However, mRNA encoding DRA, recently shown to be aCl/HCO3 exchanger (Melvin JE, Park K,Richardson L, Schultheis PJ, and Shull GE. J Biol Chem 274:22855-22861, 1999.) was abundantly expressed in cells expressingfunctional CFTR but not in cells that lacked CFTR or that expressedmutant CFTR. In conclusion, CFTR induces the mRNA expression of"downregulated in adenoma" (DRA) and, as a result, upregulates theapical Cl/HCO3 exchanger activity intracheal cells. We propose that the tracheal HCO3secretion defect in patients with CF is partly due to thedownregulation of the apical Cl/HCO3exchange activity mediated by DRA.

  相似文献   

6.
Cell pH was monitored in medullary thick ascending limbs todetermine effects of ANG II onNa+-K+(NH+4)-2Clcotransport. ANG II at 1016to 1012 M inhibited30-50% (P < 0.005),but higher ANG II concentrations were stimulatory compared with the1012 M ANG II levelcotransport activity; eventually,106 M ANG II stimulated34% cotransport activity (P < 0.003). Inhibition by 1012M ANG II was abolished by phospholipase C (PLC), diacylglycerol lipase,or cytochrome P-450-dependentmonooxygenase blockade; 1012 M ANG II had no effectadditive to inhibition by 20-hydroxyeicosatetranoic acid (20-HETE).Stimulation by 106 M ANG IIwas abolished by PLC and protein kinase C (PKC) blockade and waspartially suppressed when the rise in cytosolicCa2+ was prevented. All ANG IIeffects were abolished by DUP-753 (losartan) but not by PD-123319. Thus1012 M ANG II inhibitsvia 20-HETE, whereas 5 × 1011 M ANG II stimulatesvia PKCNa+-K+(NH+4)-2Clcotransport; all ANG II effects involveAT1 receptors and PLC activation.

  相似文献   

7.
An HEK-293 cell line stably expressing the humanrecombinant ClC-2 Cl channel was used in patch-clampstudies to study its regulation. The relative permeabilityPx/PCl calculated fromreversal potentials was I > Cl = NO3 = SCNBr. Theabsolute permeability calculated from conductance ratios wasCl = Br = NO3  SCN > I. The channel was activatedby cAMP-dependent protein kinase (PKA), reduced extracellular pH, oleicacid (C:18 cis9), elaidic acid (C:18trans9), arachidonic acid (AA; C:20cis5,8,11,14), and by inhibitors of AA metabolism,5,8,11,14-eicosatetraynoic acid (ETYA; C:20trans5,8,11,14),-methyl-4-(2-methylpropyl)benzeneacetic acid (ibuprofen), and2-phenyl-1,2-benzisoselenazol-3-[2H]-one (PZ51, ebselen). ClC-2Cl channels were activated by a combination of forskolinplus IBMX and were inhibited by the cell-permeant myristoylated PKAinhibitor (mPKI). Channel activation by reduction of bath pH wasincreased by PKA and prevented by mPKI. AA activation of the ClC-2Cl channel was not inhibited by mPKI or staurosporine andwas therefore independent of PKA or protein kinase C activation.

  相似文献   

8.
Previous studies have indicated thatCa2+-dependentCl secretion acrossmonolayers of T84 epithelial cells is subject to a variety of negativeinfluences that serve to limit the overall extent of secretion.However, the downstream membrane target(s) of these inhibitoryinfluences had not been elucidated. In this study, nuclide effluxtechniques were used to determine whether inhibition ofCa2+-dependentCl secretion induced bycarbachol, inositol 3,4,5,6-tetrakisphosphate, epidermal growth factor,or insulin reflected actions at an apical Cl conductance, abasolateral K+ conductance, orboth. Pretreatment of T84 cell monolayers with carbachol or acell-permeant analog of inositol 3,4,5,6-tetrakisphosphate reduced theability of subsequently added thapsigargin to stimulate apical125I,but not basolateral86Rb+,efflux. These data suggested an effect on an apicalCl channel. Conversely,epidermal growth factor reducedCa2+-stimulated86Rb+but not125Iefflux, suggesting an effect of the growth factor on aK+ channel. Finally, insulininhibited125Iand86Rb+effluxes. Thus effects of agents that inhibit transepithelial Cl secretion are alsomanifest at the level of transmembrane transport pathways. However, theprecise nature of the membrane conductances targeted are agonistspecific.

  相似文献   

9.
We examined the effects of human cytomegalovirus (HCMV)infection on theNa+-K+-Clcotransporter (NKCC) in a human fibroblast cell line. Using the Cl-sensitive dye MQAE, weshowed that the mock-infected MRC-5 cells express a functional NKCC.1) IntracellularCl concentration([Cl]i)was significantly reduced from 53.4 ± 3.4 mM to 35.1 ± 3.6 mMfollowing bumetanide treatment. 2)Net Cl efflux caused byreplacement of external Clwith gluconate was bumetanide sensitive.3) InCl-depleted mock-infectedcells, the Cl reuptake rate(in HCO3-free media) was reduced inthe absence of external Na+ and bytreatment with bumetanide. After HCMV infection, we found that although[Cl]iincreased progressively [24 h postexposure (PE), 65.2 ± 4.5 mM; 72 h PE, 80.4 ± 5.0 mM], the bumetanide andNa+ sensitivities of[Cl]iand net Cl uptake and losswere reduced by 24 h PE and abolished by 72 h PE. Western blots usingthe NKCC-specific monoclonal antibody T4 showed an approximatelyninefold decrease in the amount of NKCC protein after 72 h ofinfection. Thus HCMV infection resulted in the abolition of NKCCfunction coincident with the severe reduction in the amount of NKCCprotein expressed.

  相似文献   

10.
Effects of HCO3 on protein kinase C (PKC)-and protein kinase A (PKA)-induced anion conductances were investigatedin Necturus gallbladder epithelial cells. InHCO3-free media, activation of PKC via12-O-tetradecanoylphorbol 13-acetate (TPA) depolarizedapical membrane potential (Va) and decreased fractional apical voltage ratio (FR). These effects wereblocked by mucosal 5-nitro-2-(3-phenylpropylamino) benzoic acid(NPPB), a Cl channel blocker. In HCO3media, TPA induced significantly greater changes inVa and FR. These effects wereblocked only when NPPB was present in both mucosal and basolateralcompartments. The data suggest that TPA activates NPPB-sensitive apicalCl conductance (gCla) in theabsence of HCO3; in its presence, TPA stimulated bothNPPB-sensitive gCla and basolateralCl conductance (gClb).Activation of PKA via 3-isobutyl-1-methylxanthine (IBMX) also decreased Va and FR; however, thesechanges were not affected by external HCO3. Weconclude that HCO3 modulates the effects of PKC ongClb. In HCO3 medium, TPAand IBMX also induced an initial transient hyperpolarization andincrease in intracellular pH. Because these changes were independent ofmucosal Na+ and Cl, it is suggested that TPAand IBMX induce a transient increase in apical HCO3 conductance.

  相似文献   

11.
Monolayers of the human colonic epithelial cell line T84 exhibitelectrogenic Cl secretionin response to the Ca2+ agonistthapsigargin and to the cAMP agonist forskolin. To evaluate directlythe regulation of apical Clconductance by these two agonists, we have utilized amphotericin B topermeabilize selectively the basolateral membranes of T84 cellmonolayers. We find that apical anion conductance is stimulated by bothforskolin and thapsigargin but that these conductances aredifferentially sensitive to the anion channel blocker DIDS. DIDSinhibits thapsigargin-stimulated responses completely but forskolinresponses only partially. Furthermore, the apical membrane anionconductances elicited by these two agonists differ in anion selectivity(for thapsigargin, I > Cl; for forskolin,Cl > I). However, theDIDS-sensitive component of the forskolin-induced conductance responseexhibits anion selectivity similar to that induced by thapsigargin(I > Cl). Thusforskolin-induced apical anion conductance comprises at least twocomponents, one of which has features in common with that elicited bythapsigargin.

  相似文献   

12.
The substitution of gluconate forCl is commonly used tocharacterize Cl transportor Cl-dependent transportmechanisms. We evaluated the effects of substituting gluconate forCl on the transport of theP-glycoprotein substrate rhodamine 123 (R123). The replacement ofRinger solution containingCl(Cl-Ringer)with gluconate-Ringer inhibited R123 efflux, whereas the replacement ofCl by other anions (sulfateor cyclamate) had no effect. The inhibition of R123 efflux bygluconate-Ringer was absent after chloroform extraction of the sodiumgluconate salt. The readdition of the sodium gluconate-chloroformextract to the extracted gluconate-Ringer or to cyclamate-Ringerinhibited R123 efflux, whereas its addition toCl-Ringer had no effect.These observations indicate that the inhibition ofP-glycoprotein-mediated R123 transport by gluconate is due to one ormore chloroform-soluble contaminants and that the inhibition is absentin the presence of Cl. Theresults are consistent with the fact that P-glycoprotein substrates arehydrophobic. Care should be taken when replacing ions to evaluatemembrane transport mechanisms because highly pure commercialpreparations may still contain potent contaminants that affect transport.

  相似文献   

13.
String-shaped reconstitutedsmooth muscle (SM) fibers were prepared in rectangular wells by thermalgelation of a mixed solution of collagen and cultured SM cells derivedfrom guinea pig stomach. The cells in the fiber exhibited an elongatedspindle shape and were aligned along the long axis. The fibercontracted in response to KCl (140 mM), norepinephrine (NE;107 M), epinephrine (107 M), phenylephrine(106 M), serotonin (106 M), and histamine(105 M), but not acetylcholine (105 M).Phentolamine (107 M) produced a parallel rightward shiftof the NE dose-response curve. Moreover, NE-induced contractionwas partially inhibited by nifedipine and completely abolished by theintracellular Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester, the myosin light chain kinase inhibitor ML-9, theRho kinase inhibitor Y-27632, and papaverine. A[3H]quinuclidinyl benzilate binding study revealed thatthe loss of response to acetylcholine was due to the loss of muscarinic receptor expression during culture. The expression of contractile proteins in the fibers was similar to that in cultured SM cells. Theseresults suggest that, although the fiber is not a model for fullydifferentiated SM, contractile mechanisms are maintained.

  相似文献   

14.
The cerebrospinalfluid (CSF)-generating choroid plexus (CP) has manyV1 binding sites for argininevasopressin (AVP). AVP decreases CSF formation rate and choroidal bloodflow, but little is known about how AVP alters ion transport across theblood-CSF barrier. Adult rat lateral ventricle CP was loaded with36Cl,exposed to AVP for 20 min, and then placed in isotope-free artificial CSF to measure release of36Cl.Effect of AVP at 1012 to107 M on theCl efflux rate coefficient(in s1) was quantified.Maximal inhibition (by 20%) ofCl extrusion at109 M AVP was prevented bythe V1 receptor antagonist[-mercapto-,-cyclopentamethyleneproprionyl1,O-Me-Tyr2,Arg8]vasopressin.AVP also increased by more than twofold the number of dark and possiblydehydrated but otherwise morphologically normal choroid epithelialcells in adult CP. The V1 receptorantagonist prevented this AVP-induced increment in dark cell frequency.In infant rats (1 wk) with incomplete CSF secretory ability,109 M AVP altered neitherCl efflux nor dark cellfrequency. The ability of AVP to elicit functional and structuralchanges in adult, but not infant, CP epithelium is discussed in regardto ion transport, CSF secretion, intracranial pressure, and hydrocephalus.

  相似文献   

15.
Corneal endothelial function is dependent onHCO3 transport. However, the relativeHCO3 permeabilities of the apical andbasolateral membranes are unknown. Using changes in intracellular pHsecondary to removingCO2-HCO3 (at constant pH) or removing HCO3alone (at constant CO2) fromapical or basolateral compartments, we determined the relative apicaland basolateral HCO3 permeabilities and their dependencies on Na+ andCl. Removal ofCO2-HCO3from the apical side caused a steady-state alkalinization (+0.08 pHunits), and removal from the basolateral side caused an acidification(0.05 pH units). Removal ofHCO3 at constantCO2 indicated that the basolateralHCO3 fluxes were about three to fourtimes the apical fluxes. Reducing perfusateNa+ concentration to 10 mM had noeffect on apical flux but slowed basolateralHCO3 flux by one-half. In the absence of Cl, there was anapparent increase in apical HCO3 fluxunder constant-pH conditions; however, no net change could be measuredunder constant-CO2 conditions.Basolateral flux was slowed ~30% in the absence ofCl, but the net flux wasunchanged. The steady-state alkalinization after removal ofCO2-HCO3apically suggests that CO2diffusion may contribute to apicalHCO3 flux through the action of amembrane-associated carbonic anhydrase. Indeed, apicalCO2 fluxes were inhibited by theextracellular carbonic anhydrase inhibitor benzolamide and partiallyrestored by exogenous carbonic anhydrase. The presence ofmembrane-bound carbonic anhydrase (CAIV) was confirmed byimmunoblotting. We conclude that theNa+-dependent basolateralHCO3 permeability is consistent withNa+-nHCO3cotransport. Changes inHCO3 flux in the absence ofCl are most likely due toNa+-nHCO3cotransport-induced membrane potential changes that cannot bedissipated. Apical HCO3 permeabilityis relatively low, but may be augmented byCO2 diffusion in conjunction witha CAIV.

  相似文献   

16.
The functionalrole of p53 in nitric oxide (NO)-mediated vascular smooth muscle cell(VSMC) apoptosis remains unknown. In this study, VSMC fromp53/ and p53+/+ murine aortas were exposedto exogenous or endogenous sources of NO. Unexpectedly,p53/ VSMC were much more sensitive to theproapoptotic effects of NO than were p53+/+ VSMC.Furthermore, this paradox appeared to be specific to NO, because otherproapoptotic agents did not demonstrate this differential effect onp53/ cells. NO-induced apoptosis inp53/ VSMC occurred independently of cGMP generation.However, mitogen-activated protein kinase (MAPK) pathways appeared toplay a significant role. Treatment of the p53/ VSMCwith S-nitroso-N-acetylpenicillamine resulted ina marked activation of p38 MAPK and, to a lesser extent, of c-JunNH2-terminal kinase, mitogen-activated protein kinasekinase (MEK) 1/2, and p42/44 (extracellular signal-regulated kinase,ERK). Furthermore, basal activity of the MEK-p42/44 (ERK)pathway was increased in the p53+/+ VSMC. Inhibition of p38MAPK with SB-203580 or of MEK1/2 with PD-98059 blocked NO-inducedapoptosis. Therefore, p53 may protect VSMC against NO-mediatedapoptosis, in part, through differential regulation of MAPK pathways.

  相似文献   

17.
Atrial natriuretic factor (ANF) and nitric oxide (NO) stimulateproduction of guanosine 3',5'-cyclic monophosphate (cGMP) and are natriuretic. Split-drop micropuncture was performed on anesthetized rats to determine the effects of ANF and the NO donor sodium nitroprusside (SNP) on proximal tubular fluid absorption rate(Jva). Comparedwith control solutions, SNP(104 M) decreasedJva by 23% whenadministered luminally and by 35% when added to the peritubularperfusate. Stimulation of fluid uptake by luminal angiotensin II (ANGII; 109 M) was abolished bySNP (104 and106 M). In proximal tubulesuspensions, ANF (106 M)increased cGMP concentration to 143%, whereas SNP(106,105,104,103 M) raised cGMP to 231, 594, 687, and 880%, respectively.S-nitroso-N-acetylpenicillamine (SNAP) also raised cGMP concentrations with similar dose-response relations. These studies demonstrate inhibition by luminal and peritubular NO of basal and ANG II-stimulated proximal fluid absorption in vivo. The ability of SNP to inhibit basal fluid uptake whereas ANFonly affected ANG II-stimulated transport may be because of productionof higher concentrations of cGMP by SNP.

  相似文献   

18.
The lumen of theepididymis is the site where spermatozoa undergo their final maturationand acquire the capacity to become motile. An acidic luminal fluid isrequired for the maintenance of sperm quiescence and for the preventionof premature activation of acrosomal enzymes during their storage inthe cauda epididymis and vas deferens. We have previously demonstratedthat a vacuolar H+-ATPase[proton pump (PP)] is present in the apical pole of apical and narrow cells in the caput epididymis and of clear cells in thecorpus and cauda epididymis and that this PP is responsible for themajority of proton secretion in the proximal vas deferens. We now showthat PP-rich cells in the vas deferens express a high level of carbonicanhydrase type II (CAII) and that acetazolamide markedly inhibits therate of proton secretion by 46.2 ± 6.1%. The rate ofacidification was independent ofCl and was stronglyinhibited by SITS under both normal andCl-free conditions (50.6 ± 5.0 and 57.5 ± 6.0%, respectively). In the presence ofCl,diphenylamine-2-carboxylate (DPC) had no effect, whereas SITS inhibitedproton secretion by 63.7 ± 11.3% when applied together with DPC. In Cl-freesolution, DPC markedly inhibited proton efflux by 45.1 ± 7.6%,SITS produced an additional inhibition of 18.2 ± 6.6%, and bafilomycin had no additive effect. In conclusion, we propose that CAIIplays a major role in proton secretion by the proximal vas deferens.Acidification does not require the presence ofCl, but DPC-sensitiveCl channels mightcontribute to basolateral extrusion ofHCO3 underCl-free conditions. Theinhibition by SITS observed under both normal andCl-free conditionsindicates that aCl/HCO3exchanger is not involved and that an alternativeHCO3 transporter participates in proton secretion in the proximal vas deferens.

  相似文献   

19.
In this study,patch-clamp techniques were applied to cultured neonatal mouse cardiacmyocytes (NMCM) to assess the contribution of cAMP stimulation to theanion permeability in this cell model. Addition of either isoproterenolor a cocktail to raise intracellular cAMP increased the whole cellcurrents of NMCM. The cAMP-dependent conductance was largely anionic,as determined under asymmetrical (low intracellular)Cl conditions and symmetrical Clin the presence of various counterions, including Na+,Mg2+, Cs+, andN-methyl-D-glucamine. Furthermore, thecAMP-stimulated conductance was also permeable to ATP. ThecAMP-activated currents were inhibited by diphenylamine-2-carboxylate,glibenclamide, and an anti-cystic fibrosis transmembrane conductanceregulator (CFTR) monoclonal antibody. The anti-CFTR monoclonal antibodyfailed, however, to inhibit an osmotically activated anion conductance,indicating that CFTR is not linked to osmotically stimulated currentsin this cell model. Immunodetection studies of both neonatal mouse heart tissue and cultured NMCM revealed that CFTR is expressed in thesepreparations. The implication of CFTR in the cAMP-stimulated Cl- and ATP-permeable conductance was furtherverified with NMCM of CFTR knockout mice[cftr(/)] in which cAMP stimulationwas without effect on the whole cell currents. In addition, stimulation with protein kinase A and ATP induced Cl-permeablesingle-channel activity in excised, inside-out patches from control,but not cftr(/) NMCM. The data in this report indicate that cAMP stimulation of NMCM activates an anion-permeable conductance with functional properties similar to those expected forCFTR, thus suggesting that CFTR may be responsible for the cAMP-activated conductance. CFTR may thus contribute to the permeation and/or regulation of Cl- and ATP-permeable pathwaysin the developing heart.

  相似文献   

20.
Pancreatic dysfunction in patients with cystic fibrosis (CF) isfelt to result primarily from impairment of ductalHCO3 secretion. We provide molecularevidence for the expression of NBC-1, an electrogenicNa+-HCO3cotransporter (NBC) in cultured human pancreatic ductcells exhibiting physiological features prototypical of CF ductfragments (CFPAC-1 cells) or normal duct fragments [CAPAN-1 cellsand CFPAC-1 cells transfected with wild-type CF transmembraneconductance regulator (CFTR)]. We further demonstrate that1)HCO3 uptake across the basolateralmembranes of pancreatic duct cells is mediated via NBC and2) cAMP potentiates NBC activitythrough activation of CFTR-mediatedCl secretion. We proposethat the defect in agonist-stimulated ductal HCO3 secretion in patients with CF ispredominantly due to decreased NBC-drivenHCO3 entry at the basolateralmembrane, secondary to the lack of sufficient electrogenic drivingforce in the absence of functional CFTR.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号