首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and invade hepatocytes as a first and obligatory step of the parasite life cycle in man. Hepatocyte invasion involves proteins secreted from parasite vesicles called micronemes, the most characterized being the thrombospondin-related adhesive protein (TRAP). Here we investigated the expression and function of another microneme protein recently identified in Plasmodium falciparum sporozoites, apical membrane antigen 1 (AMA-1). P. falciparum AMA-1 is expressed in sporozoites and is lost after invasion of hepatocytes, and anti-AMA-1 antibodies inhibit sporozoite invasion, suggesting that the protein is involved during invasion of hepatocytes. As observed with TRAP, AMA-1 is initially mostly sequestered within the sporozoite. Upon microneme exocytosis, AMA-1 and TRAP relocate to the sporozoite surface, where they are proteolytically cleaved, resulting in the shedding of soluble fragments. A subset of serine protease inhibitors blocks the processing and shedding of both AMA-1 and TRAP and inhibits sporozoite infectivity, suggesting that interfering with sporozoite proteolytic processing may constitute a valuable strategy to prevent hepatocyte infection.  相似文献   

2.
Plasmodium falciparum rhoptry-associated proteins 1 (RAP1) and 2 (RAP2) are antigens presenting themselves as candidates for a subunit malaria vaccine. RAP2 protein, non-overlapping, consecutive peptides were synthesised and tested in red blood cell (RBC) binding assays to identify their receptor-ligand interaction in recognising RAP2 regions involved in the in vitro merozoite invasion process. Four high activity binding peptides (HABPs) were identified in the resulting 20 peptides. Peptides 26220 ((61)NHFSSADELIKYLEKTNINT(80)), 26225 ((161)IKKNPFLRVLNKASTTTHAT(180)) and 26229 ((241)RSVNNVISKNKTLGLRKRSS(260)) were located in the amino terminal and central part of the protein and HABP 26235 ((361)FLAEDFVELFDVTMDCYSRQ(380)) was located at the carboxy terminal. All these HABPs showed saturable binding and presented dissociation constants between 500 and 950 nM; the number of binding sites per RBC ranged from 48,000 to 160,000. High binding peptides' critical amino acids involved in RBC binding were determined by competition binding assays; their amino acids appear in bold in the sequences shown above. SDS-PAGE results showed that peptides 26220, 26225 and 26229 had at least two different sets of 62 and 42 kDa HABP receptors on RBCs and that peptide 26235 had at least two different sets of 77 and 62 kDa. HABPs inhibited in vitro merozoite invasion by between 54% and 94% at 200 microM, suggesting that these RAP2 peptides are involved in the in vitro P. falciparum invasion process.  相似文献   

3.
Erythrocyte binding ligand 1 (EBL-1) is a member of the ebl multigene family involved in Plasmodium falciparum invasion of erythrocytes. We found that five EBL-1 high-activity binding peptides (HABPs) bound specifically to erythrocytes: 29895 ((41)HKKKSGELNNNKSGILRSTY(60)), 29903 ((201)LYECGK-KIKEMKWICTDNQF(220)), 29923 ((601)CNAILGSYADIGDIVRGLDV(620)), 29924((621)WRDINTNKLSEK-FQKIFMGGY(640)), and 30018 ((2481)LEDIINLSKKKKKSINDTSFY(2500)). We also show that binding was saturable, not sialic acid-dependent, and that all peptides specifically bound to a 36-kDa protein on the erythrocyte membrane. The five HABPs inhibited in vitro merozoite invasion depending on the peptide concentration used, suggesting their possible role in the invasion process.  相似文献   

4.
Minutes after injection into the circulation, malaria sporozoites enter hepatocytes. The speed and specificity of the invasion process suggest that it is receptor mediated. We show here that recombinant Plasmodium falciparum circumsporozoite protein (CS) binds specifically to regions of the plasma membrane of hepatocytes exposed to circulating blood in the Disse space. No binding has been detected in other organs, or even in other regions of the hepatocyte membrane. The interaction of CS with hepatocytes, as well as sporozoite invasion of HepG2 cells, is inhibited by synthetic peptides representing the evolutionarily conserved region II of CS. We conclude that region II is a sporozoite ligand for hepatocyte receptors localized to the basolateral domain of the plasma membrane. Our findings provide a rational explanation for the target cell specificity of malaria sporozoites.  相似文献   

5.
Plasmodium falciparum multi-stage proteins are involved in vital processes for parasite survival, which turns them into attractive targets for studies aimed at developing a fully effective antimalarial vaccine. MCP-1 and PfSPATR are both found in sporozoite and merozoite forms, and have been associated respectively with invasion of hepatocytes and red blood cells (RBCs). Binding assays with synthetic peptides derived from these two important proteins have enabled identifying those sequences binding with high specific activity (named High activity binding peptides-HABPs) to hepatoma-derived HepG2 cells and human RBCs. Twelve RBC HABPs were identified within the MCP-1 amino acid sequence, most of them in the C-terminal region. The MCP-1 HABPs 33387 and 33397 also presented high activity binding to HepG2 cells. PfSPATR presented four RBC HABPs and two HepG2 HABPs, but only one (32686) could bind to both cell types. RBC binding assays evidenced that binding of all HABPs was saturable and differentially affected by the enzymatic treatment of target cells. Moreover, all HABPs inhibited in vitro invasion of merozoites at 200 microM and had particular structural features when analyzed by circular dichroism. The results suggest that these synthetic peptides capable of binding to the two P. falciparum target cells could be potentially included in the design of a multi-stage, subunit-based, chemically synthesized antimalarial vaccine.  相似文献   

6.
Plasmodium falciparum sporozoite surface protein 2 (Pf SSP2), also called thrombospondin related anonymous protein (TRAP), is involved in the process of sporozoite invasion of hepatocytes. Pf SSP2/TRAP possesses two different adhesion domains sharing sequences and structural homology with von Willebrand factor A-domains and human repeat I thrombospondin (TSP). Pf SSP2/TRAP has also been implicated in sporozoite mobility and in mosquito salivary gland invasion processes. We tested 15-mer long synthetic peptides having five overlapping residues covering the complete protein Pf SSP2 sequence in binding assays to Hep G2 cells. In these 57 peptides, 21 high-activity binding peptides (HABPs) were identified; five were in the adhesion domains already described and 16 were in two regions toward the protein's carboxy and middle terminal part. Six HABPs showed conserved amino acid sequences: 3243 (21FLVNGRDVQNNIVDE35), 3279 (201FLVGCHPSDGKCNLY215), 3287 (241TASCGVWDEWSPCSV255), 3289 (251SPCSVTCGKGTRSRK265), 3327 (441ERKQSDPQSQDNNGNY455) and 3329 (451DNNGNRHVPNSEDREY465). The HABPs show saturable binding and dissociation constants between 140 and 900 nm with 40 000-855 000 binding sites per cell. The 3279 (201FLVGCHPSDGKCNLY215), 3323 (421NDKSDRYIPYSPLSP435) and 3331 (461SEDRETRPHGRNNENY475) HABPs have B epitopes in their sequences; these have previously been recognized by antibodies partially inhibiting hepatocyte invasion and development of the hepatic state. The 3287 (241TASCGVWDEWSPCSV255) and 3289 (251SPCSVTCGKGTRSRK265) HABPs share common sequences with the Pf SSP2/TRAP region II plus, which is present in a great number of adhesion proteins. Based on this information, six new peptides covering the high binding regions identified previously were synthesized and, using a competition assay, the amino acid involved in the binding were determined.  相似文献   

7.
Tryptophan-threonine-rich antigen (TryThrA) is a Plasmodium falciparum homologue of Plasmodium yoelii-infected erythrocyte membrane pypAg-1 antigen. pypAg-1 binds to the surface of uninfected mouse erythrocytes and has been used successfully in vaccine studies. The two antigens are characterized by an unusual tryptophan-rich domain, suggesting similar biological properties. Using synthetic peptides spanning the TryThrA sequence and human erythrocyte we have done binding assays to identify possible TryThrA functional regions. We describe four peptides outside the tryptophan-rich domain having high activity binding to normal human erythrocytes. The peptides termed HABPs (high activity binding peptides) are 30884 ((61)LKEKKKKVLEFFENLVLNKKY(80)) located at the N-terminal and 30901 ((401)RKSLEQQFGDNMDKMNKLKKY(420)), 30902 ((421)KKILKFFPLFNYKSDLESIM(440)) and 30913 ((641)DLESTAEQKAEKKGGKAKAKY(660)) located at the C-terminal. Studies with polyclonal goat antiserum against synthetic peptides chosen to represent the whole length of the protein showed that TryThrA has fluorescence pattern similar to PypAg-1 of P. yoelii. All HABPs inhibited merozoite in vitro invasion, suggesting that TryThrA protein may be participating in merozoite-erythrocyte interaction during invasion.  相似文献   

8.
Synthetic peptides from the liver stage antigen-1 (LSA-1) antigen sequence were used in HepG2 cell and erythrocyte binding assays to identify regions that could be involved in parasite invasion. LSA-1 protein peptides 20630 ((21)INGKIIKNSEKDEIIKSNLRY(40)), 20637 ((157)KEKLQGQQSDSEQERRAY(173)), 20638 ((174)KEKLQEQQSDLEQERLAY(190)) and 20639 (191KEKLQEQQSDLEQERRAY(207)) had high binding activity in HepG2 assays. Were located in immunogenic regions; peptide cell binding was saturable. Peptide 20630 bound specifically to 48kDa HepG2 membrane surface protein. LSA-1 peptides 20630 ((21)INGKIIKNSEKDEIIKSNLRY(40)) and 20633 ((81)DKELTMSNVKNVSQTNFKSLY(100)) showed specific erythrocyte binding activity and inhibited merozoite invasion of erythrocytes in vitro. A monkey serum prepared against LSA-1 20630 peptide analog (CGINGKNIKNAEKPMIIKSNLRGC) inhibited merozoite invasion in vitro. The data suggest LSA-1 "High Activity Binding Peptides" could play a possible role in hepatic cell invasion as well as merozoite invasion of erythrocytes.  相似文献   

9.
Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum contains an amino acid motif based around the sequence WSPCSVTCG which is also found in region II of the circumsporozoite (CS) proteins of different species of Plasmodium. This amino acid motif confers on the CS protein the ability to bind specifically to sulfated glycoconjugates and to hepatocytes. This suggests that the interaction of CS protein with sulfated glycoconjugates on the surface of the hepatocytes may represent the first molecular event of sporozoite invasion of liver cells. Experimental evidence indicates that TRAP is localized both on the micronemes and on the surface of P. falciparum sporozoites implying that TRAP with its putative sulfated glycoconjugate binding motif may also be involved in recognition and/or entry of hepatocytes by the sporozoite. We show here that different TRAP constructs expressed in Escherichia coli bind to sulfogalactosyl-cerebrosides (sulfatides) and to the surface of HepG2 cells. These interactions are dependent on the presence of the conserved amino acid motif WSPCSVTCG within the sequences of the constructs and are completely inhibited by several sulfated glycoconjugates as well as by suramin, a polysulfonated drug with anti-protozoan activity. Moreover, sporozoite invasion of HepG2 cells is inhibited by antisera raised against these different TRAP constructs and by the presence of low concentrations of suramin. We concluded that TRAP may be one of the parasite encoded molecules in the host-parasite interaction that results in sporozoite invasion of hepatocytes.  相似文献   

10.
Epstein-Barr virus lacking glycoprotein gp85 cannot infect B-cells and epithelial cells. The gp85 belongs to the molecular complex required for virus invasion of B-lymphocyte or epithelial cells. Moreover, there is evidence that gp85 is necessary for virus attachment to epithelial cells. Thirty-six peptides from the entire gp85-sequence were tested in epithelial and lymphoblastoid cell line binding assays to identify gp85-regions involved in virus-cell interaction. Five of these peptides presented high binding activity to Raji, Ramos, P3HR-1, and HeLa cells, but not to erythrocytes; Raji-cell affinity constants were between 80 and 140nM. Of these five peptides, 11435 ((181)TYKRVTEKGDEHVLSLVFGK(200)), 11436 ((201)TKDLPDLRGPFSYPSLTSAQ(220)), and 11438 ((241)YFVPNLKDMFSRAVTMTAAS(260)) bound to a 65kDa protein on Raji-cell surface. These peptides and antibodies induced by them (recognising live EBV-infected cells) inhibited Epstein-Barr virus interaction with cord blood lymphocytes. It is thus probable that gp85-regions defined by peptides 11435, 11436, and 11438 are involved in EBV invasion of B-lymphocytes.  相似文献   

11.
The Plasmodium falciparum ring-erythrocyte surface antigen (RESA)-like putative protein was identified and characterised. PCR and RT-PCR assays revealed that the gene encoding this protein was both present and being transcribed in P. falciparum strain FCB-2 16 h after erythrocyte invasion. Indirect immunofluorescence studies detected this protein in infected erythrocyte (IE) cytosol in dense fluorescent granules similar to Maurer's clefts at 16-20 h (parasites in ring and trophozoite stages) and very strongly on IE membranes at 22 h, suggesting that it is synthesised during early ring stages (16 h) and transported to the infected red blood cell (RBC) membrane surface during the trophozoite stage (22 h). Western blotting showed that antisera produced against polymerised synthetic peptides of this protein recognised a 72-kDa band in P. falciparum schizont lysate. P. falciparum RESA-like peptides used in normal RBC binding assays revealed that peptides 30326 ((101)NAEKI LGFDD KNILE ALDLFY(120)), 30334 ((281)RVTWK KLRTK MIKAL KKSLTY(300)) and 30342 ((431)SSPQR LKFTA GGGFC GKLRNY(450)) bind with high activity and saturability, presenting nM affinity constants. These peptides contain alpha-helical structural elements, as determined by circular dichroism, and inhibit P. falciparum in vitro invasion of normal RBCs by up to 91%, suggesting that some RESA-like protein regions are involved in intra-erythrocyte stage P. falciparum invasion.  相似文献   

12.
The Plasmodium falciparum acidic-basic repeat antigen represents a potential malarial vaccine candidate. One of this protein's high activity binding peptides, named 2150 ((161)KMNMLKENVDYIQKNQNLFK(180)), is conserved, non-immunogenic, and non-protection-inducing. Analogue peptides whose critical binding residues (in bold) were replaced by amino-acids having similar mass but different charge were synthesized and tested to try to modify such immunological properties. These analogues' HLA-DRbeta1* molecule binding ability were also studied in an attempt to explain their biological mechanisms and correlate binding capacity and immunological function with their three-dimensional structure determined by (1)H NMR. A 3(10) distorted helical structure was identified in protective and immunogenic peptide 24922 whilst alpha-helical structure was found for non-immunogenic, non-protective peptides having differences in alpha-helical position. The changes performed on immunogenic, protection-inducing peptide 24922 allowed it to bind specifically to the HLA-DRbeta1*0301 molecule, suggesting that these changes may lead to better interaction with the MHC Class II-peptide-TCR complex rendering it immunogenic and protective, thus suggesting a new way of developing multi-component, sub-unit-based anti-malarial vaccines.  相似文献   

13.
Apical membrane antigen-1 (AMA-1) is an integral Plasmodium falciparum malaria parasite membrane protein. Peptides having high activity binding to human red blood cells have been identified in this protein. One of them, peptide 4325, with the amino acid sequence MIKSAFLPTGAFKADRYKSH, for which critical binding residues have already been defined (underlined), is conserved and non-immunogenic. Its critical binding residues were changed for amino acids having similar mass but different charge to change such immunological properties. These changes rendered some peptides immunogenic and protective against experimental challenge in Aotus monkeys. Three-dimensional models of peptide 4325 and its analogues, 20032 and 20034, were calculated from NMR experiments with distance geometry and restrained molecular dynamic methods. Non-immunogenic, non-protective peptide 4325 showed differences in its secondary structure with respect to protective, immunogenic peptides 20032 and 20034. Such data suggest that these modifications could have converted non-immunogenic peptides into immunogenic, protective ones, making them excellent candidates for a multi-component subunit synthetic malaria vaccine.  相似文献   

14.
Verra F  Hughes AL 《Parassitologia》1999,41(1-3):93-95
The Apical Membrane Antigen-1 (AMA-1) is a protein localized in the apical organelles of the merozoite, one of the stages in the life cycle of malaria parasites (Plasmodium spp.) that infects the vertebrate host. This antigen, which is encoded by a single polymorphic locus, plays a role in evading immune detection and mediating invasion into target host cells. We found evidence of positive Darwinian selection on immunogenic regions of P. falciparum AMA-1 favoring genetic diversity in the T-cell epitopes and in regions likely to interact with host antibodies. These results support the hypothesis that polymorphism at the AMA-1 locus in maintained by balancing selection arising from host immune recognition.  相似文献   

15.
Plasmodium falciparum sporozoites invade liver cells in humans and set the stage for malaria infection. Circumsporozoite protein (CSP), a predominant surface antigen on sporozoite surface, has been associated with the binding and invasion of liver cells by the sporozoites. Although CSP across the Plasmodium genus has homology and conserved structural organization, infection of a non-natural host by a species is rare. We investigated the role of CSP in providing the host specificity in P. falciparum infection. CSP from P. falciparum, P. gallinaceum, P. knowlesi, and P. yoelii species representing human, avian, simian, and rodent malaria species were recombinantly expressed, and the proteins were purified to homogeneity. The recombinant proteins were evaluated for their capacity to bind to human liver cell line HepG2 and to prevent P. falciparum sporozoites from invading these cells. The proteins showed significant differences in the binding and sporozoite invasion inhibition activity. Differences among proteins directly correlate with changes in the binding affinity to the sporozoite receptor on liver cells. P. knowlesi CSP (PkCSP) and P. yoelii CSP (PyCSP) had 4,790- and 17,800-fold lower affinity for heparin in comparison to P. falciparum CSP (PfCSP). We suggest that a difference in the binding affinity for the liver cell receptor is a mechanism involved in maintaining the host specificity by the malaria parasite.  相似文献   

16.
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.  相似文献   

17.
Apical membrane antigen-1 (AMA-1) is a target of antibodies that inhibit invasion of Plasmodium falciparum into human erythrocytes and is a candidate for inclusion in a malaria vaccine. We have identified a line of P. falciparum (W2mef) less susceptible to anti-AMA1 antibodies raised to the protein from a heterologous parasite line (3D7). We have constructed transgenic P. falciparum expressing heterologous AMA-1 alleles. In vitro invasion assays show that these transgenic parasites differ from parental lines in susceptibility to inhibitory antibodies, providing direct evidence that sequence polymorphisms within AMA-1 are responsible for evasion of immune responses that inhibit parasite invasion. We also generated a parasite line that would express a chimeric AMA-1 protein, in which highly polymorphic residues within domain 1 were exchanged. Inhibition assays suggest that these residues are not sufficient for inhibition by invasion-blocking antibodies. This study is the first to use P. falciparum allelic exchange to examine the relationship between genetic diversity and susceptibility to protective antibodies. The findings have important implications for the development of an AMA-1-based malaria vaccine.  相似文献   

18.
C1 inhibitor (C1INH), a complement regulatory protein, prevents endotoxin shock via a direct interaction of the amino-terminal domain with gram-negative bacterial lipopolysaccharide (LPS). Importantly, the cleaved, inactive C1INH still is an anti-endotoxin effector indicating the anti-endotoxin peptide that generates from the amino-terminal domain of C1INH. In this study, we first identified that a cleaved fragment within the major part of the amino-terminal domain in in vitro proteolytic analysis of C1INH had an ability to bind to LPS. We synthesized several peptides overlapping the C1INH cleaved fragment. Among these synthetic peptides, a 13-mer derivative peptide at position from 18 to 30, named N2((18-30)), exhibited the most powerful anti-endotoxin activity in vitro, enlightening that it was most strong at binding to LPS, inhibiting the interaction of LPS with LPS-binding protein (LBP), blocking LPS binding to CD14(+) cells, and suppressing production of tumor necrosis factor (TNF)-alpha by murine macrophages, RAW 264.7. In the murine endotoxin shock model, the peptide N2((18-30)) protected mice from LPS-induced lethal septic shock by inhibiting macrophage activation. These data indicate that the peptide N2((18-30)) derived from the amino-terminal region of C1INH is anti-endotoxin.  相似文献   

19.
The apical membrane antigen-1 (AMA-1) of Plasmodium falciparum is a prime malaria asexual blood-stage vaccine candidate. Antigenic variation is one of the main obstacles in the development of a universal effective malaria vaccine. The extracellular region of P. falciparum AMA-1 (PfAMA-1) consists of three domains (I-III), of which the domain I is the most diverse region of this antigen. The objective of our study was to investigate and analyze the extent of genetic diversity and the effectiveness of natural selection at the AMA-1 domain I of P. falciparum in isolates from Iran. A fragment of ama-1 gene spanning domain I was amplified by nested PCR from 48 P. falciparum isolates collected from two major malaria endemic areas of Iran during 2009 to August 2010 and sequenced. Genetic polymorphism and statistical analyses were performed using DnaSP and MEGA software packages. Analysis of intrapopulation diversity revealed relatively high nucleotide and haplotype diversity at the PfAMA-1 domain I of Iranian isolates. Neutrality tests provided strong evidence of positive natural selection acting on the sequenced gene region. The findings also demonstrated that, in addition to natural selection, intragenic recombination may contribute to the diversity observed at the domain I. The results obtained will have significant implications in the design and the development of an AMA-1-based vaccine against falciparum malaria.  相似文献   

20.
Several sporozoite proteins have been associated with Plasmodium falciparum cell traversal and hepatocyte invasion, including the cell-traversal protein for ookinetes and sporozoites (CelTOS), and thrombospondin-related sporozoite protein (TRSP). CelTOS and TRSP amino acid sequences have been finely mapped to identify regions specifically binding to HeLa and HepG2 cells, respectively. Three high-activity binding peptides (HABPs) were found in CelTOS and one HABP was found in TRSP, all of them having high α-helical structure content. These HABPs' specific binding was sensitive to HeLa and HepG2 cells' pre-treatment with heparinase I and chondroitinase ABC. Despite their similarity at three-dimensional (3D) structural level, TRSP and TRAP HABPs located in the TSR domain did not compete for the same binding sites. CelTOS and TRSP HABPs were used as a template for designing modified sequences to then be assessed in the Aotus monkey experimental model. Antibodies directed against these modified HABPs were able to recognize both the native parasite protein by immunofluorescence assay and the recombinant protein (expressed in Escherichia coli) by Western blot and ELISA assays. The results suggested that these modified HABPs could be promising targets in designing a fully effective, antimalarial vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号