首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function currently attributed to tetraspanins is to organize molecular complexes in the plasma membrane by using multiple cis-interactions. Additionally, the tetraspanin CD9 may be a receptor that binds the soluble ligand PSG17, a member of the immunoglobulin superfamily (IgSF)/CEA subfamily. However, previous data are also consistent with the PSG17 receptor being a CD9 cis-associated protein. In the current study, CD9 extracellular loop (EC2) specifically bound to PSG17-coated beads, indicating a direct interaction between the two proteins. However, CD9-EC2 did not bind to PSG17-coated beads if the CD9-EC2 had the mutation SFQ (173-175) to AAA, a previously studied mutation in egg CD9 that abolishes sperm-egg fusion. Also, PSG17 bound to 293 T cells transfected with wild-type CD9 but not the mutant CD9. By immunofluorescence, PSG17 bound to wild-type eggs but not to CD9 null eggs. The presence of approximately 2 microM recombinant PSG17 produced a significant and reversible inhibition (60-80%) of sperm-egg fusion. Thus, we conclude that CD9 is a receptor for PSG17 and when the PSG17 binding site is mutated or occupied, sperm-egg fusion is impaired. These findings suggest that egg CD9 may function in gamete fusion by binding to a sperm IgSF/CEA subfamily member and such proteins have previously been identified on sperm.  相似文献   

2.
CD9 is a member of the tetraspanin family proteins and has recently been shown to be essential for sperm-oocyte fusion in mice. The giant panda (Ailuropoda melanoleuca) CD9 (gpCD9) cDNA was amplified for the first time by RT-PCR from ovary total RNA and cloned, sequenced and analyzed. The result revealed that the open reading frame (ORF) of gpCD9 was 681 bp, which has the same length as that of mouse. Sequence analysis and structure prediction displayed that the amino acid sequence of gpCD9 is over 80% identity to those of mammals with the conserved structures, including the four transmembrane domains (TM) and certain characteristic residues. The results of sperm-egg fusion experiments demonstrated that giant panda CD9 large extracellular loop (LEL) significantly inhibited (P < 0.05) the mouse gamete fusion when the recombinant protein was added. However, when three amino acid residues TVT (173-175) of the gpCD9 were mutated to AAA, the large extracellular loop (LELM) of mutated protein was rarely inhibiting the gamete fusion of mice. Our results may be useful in improving an insight into understanding the potential mechanism of gamete fusion and genetic characteristics of giant panda.  相似文献   

3.
In clinical studies of the ability of capacitated human sperm to penetrate zona-free hamster eggs, we have previously observed that the ratio of oolemmal adherent to penetrating sperm varied between men. Sperm incorporation did not occur immediately following gamete adhesion and not all adherent sperm penetrated the egg. To further investigate this phenomenon, comparisons were made of the kinetics of gamete adhesion, membrane fusion, and sperm incorporation of capacitated mouse and human spermatozoa by zona-free hamster eggs and of mouse sperm by zona-free mouse and hamster eggs. Eggs were inseminated with either capacitated human or mouse sperm or combinations of both, washed out of sperm suspension after initial gamete adherence, and further incubated in sperm-free medium. Gamete membrane fusion was judged by dye transfer of Hoechst 33342 and sperm entry of the cortical ooplasm by observation of expanded sperm heads within acridine orange stained eggs. Oolemmal adherent mouse and human sperm fused with and penetrated zona-free hamster eggs at different times whether eggs were inseminated in parallel or with combinations of sperm of both species. Oolemmal adherent mouse sperm penetrated zona-free hamster eggs prior to their penetration of zona-free mouse eggs. Ultrastructural studies of zona-free human eggs inseminated with human sperm confirmed prior observations with hamster eggs that only acrosome-reacted human sperm adhere to the oolemma. These results have lead us to postulate that sperm entry into the egg may occur through a "zipper" mechanism involving the ligation of local gamete receptors similar to the incorporation of target particles by phagocytes and suggest that not all oolemmal adherent human sperm are capable of being incorporated although they have undergone an acrosome reaction.  相似文献   

4.
Fertilization of a mouse egg results in modification of the cytoplasmatic membrane (oolemma) which makes fusion with additional sperm impossible. CD9 is a transmembrane protein reported to be responsible for gamete fusion. Since the molecular mechanism of zygote membrane modification after fertilization remains unknown, we were interested to check whether lack of CD9 is the reason for non-penetrability of zona-free zygotes. We wanted also to determine the effect of different methods of zona pellucida removal on the presence of CD9 on the surface of unfertilized eggs and their ability to be fertilized afterwards. We demonstrated that CD9 is present on the surface of both zygotes and parthenogenotes. We showed also that the treatment of eggs with pronase completely removes CD9 from the membrane of eggs making them infertile. Eggs treated with chymotrypsin and acid Tyrode still posses CD9 on their surface and remain fertile. The results of our experiments indicate that modification of the zygote oolemma does not involve a lack of CD9. We cannot exclude however, that the amount of CD9 decreases after fertilization. In addition, our studies indicate that the previously reported infertility of eggs treated with different proteases may result from the decrease or removal of CD9 and probably other proteins responsible for gamete fusion from the surface of eggs.  相似文献   

5.
Complementary adhesion molecules are located on the surface of mouse eggs and sperm. These molecules support species-specific interactions between sperm and eggs that lead to gamete fusion (fertilization). Modification of these molecules shortly after gamete fusion assists in prevention of polyspermic fertilization. mZP3, an 83,000-Mr glycoprotein located in the egg extracellular coat, or zona pellucida, serves as primary sperm receptor. Gamete adhesion in mice is carbohydrate-mediated, since sperm recognize and bind to certain mZP3 serine/threonine- (O-) linked oligosaccharides. As a consequence of binding to mZP3, sperm undergo the acrosome reaction, which enables them to penetrate the zona pellucida and fertilize the egg. A 56,000-Mr protein called sp56, which is located in plasma membrane surrounding acrosome-intact mouse sperm heads, is a putative primary egg-binding protein. It is suggested that sp56 recognizes and binds to certain mZP3 O-linked oligosaccharides. Acrosome-reacted sperm remain bound to eggs by interacting with mZP2, a 120,000-Mr zona pellicida glycoprotein. Thus, mZP2 serves as secondary sperm receptor. Perhaps a sperm protease associated with inner acrosomal membrane, possibly (pro)acrosin, serves as secondary egg-binding protein. These and, perhaps, other egg and sperm surface molecules regulate fertilization in mice. Homologous molecules apparently regulate fertilization in other mammals.  相似文献   

6.
A prerequisite for successful fertilization is the species-specific binding of sperm to the extracellular coat of the egg. Gamete binding triggers the release of sperm hydrolytic enzymes that digest a path through the egg coat, thus bringing sperm into proximity with the egg plasma membrane where gamete fusion occurs. Although some components of the sperm membrane and the egg coat that participate in sperm-egg interactions have been identified, results from targeted deletions and gene substitutions indicate that other, as yet unidentified, gamete receptors must contribute to sperm-egg binding. Recent studies implicate the bi-motif protein, SED1, as being required for successful sperm-egg adhesion in mouse. SED1 contains Notch-like EGF repeats as well as discoidin/F5/8 complement domains--motifs that mediate a variety of cell-cell and cell-matrix interactions. SED1's ability to promote gamete adhesion resides within its two discoidin/F5/8C domains, which are able to dock to substrates as diverse as phospholipid membranes and extracellular matrices. SED1 is also expressed in a wide range of tissues and epithelia, where it may function similarly as an adhesive protein facilitating cell-cell and/or cell-matrix interactions.  相似文献   

7.
CD9 is a membrane protein belonging to the tetraspanin family. Despite CD9's broad tissue distribution, the only abnormality observed in CD9-deficient mice was infertility of females, which was responsible for a defect in the sperm-egg fusion process. However, the function of CD9 in sperm-egg fusion is not clear at all because the technique to analyze the activity of molecules in sperm-egg fusion has not been established. We demonstrated that the exogenous mouse CD9, expressed by polyadenylated mRNA injection at the germinal-vesicle stage oocytes, was precisely localized to the egg plasma membrane, and the expression reversed the infertility of CD9(-/-) eggs. Then, two other tetraspanins, human CD9 and mouse CD81, overexpressed with this technique on CD9(-/-) eggs restored the fertilization rate up to approximately 90 and approximately 50% against that of wild type eggs, respectively. Moreover, in the presence of an anti-mouse CD9 mAb, which blocks sperm-egg fusion, expression of human CD9 or mouse CD81 on eggs also rescued the fusibility. These results suggested that human CD9 plays a crucial role in human fertilization, and mouse CD81 has the potential to compensate for CD9 function in sperm-egg fusion. In addition, the polyadenylated mRNA injection is effective for molecular analysis of sperm-egg fusion.  相似文献   

8.
Jaspisin, originally isolated from a marine sponge as an inhibitor of the hatching of the sea urchin (Hemicentrotus pulcherrimus) embryo, causes inhibition of sea urchin fertilization. Electron microscopic examination revealed that the acrosome reaction was induced in jaspisin-treated sperm when they were incubated with an intact egg. The acrosome-reacted sperm bound to the vitelline layer by the acrosomal material surrounding the acrosomal process. However, fusion of the acrosomal process and the egg plasma membrane failed to take place. Membrane potential changes were monitored using eggs preloaded with a membrane potential-sensitive fluorochrome, di-8-ANEPPS. Depolarization of the membrane potential, normally observed in the fertilized egg was not observed in the egg inseminated in the presence of jaspisin, indicating the absence of electrical continuity between the jaspisin-treated egg and sperm. Jaspisin inhibited the activities of matrix metallo-endoproteinase members but not of other types of proteinases. These results provide strong, albeit indirect, evidence that a matrix metallo-endoproteinase(s) is involved in the process of gamete fusion during sea urchin fertilization.  相似文献   

9.
Rat epididymal protein DE associates with the sperm surface during epididymal maturation and is a candidate molecule for mediating gamete membrane fusion in the rat. Here, we provide evidence supporting a role for DE in mouse sperm-egg fusion. Western blot studies indicated that the antibody against rat protein DE can recognize the mouse homologue in both epididymal tissue and sperm extracts. Indirect immunofluorescence studies using this antibody localized the protein on the dorsal region of the acrosome. Experiments in which zona-free mouse eggs were coincubated with mouse capacitated sperm in the presence of DE showed a significant and concentration-dependent inhibition in the percentage of penetrated eggs, with no effect on either the percentage of oocytes with bound sperm or the number of sperm bound per egg. Immunofluorescence experiments revealed specific DE-binding sites on the fusogenic region of mouse eggs. Because mouse sperm can penetrate zona-free rat eggs, the participation of DE in this interaction was also investigated. The presence of the protein during gamete coincubation produced a significant reduction in the percentage of penetrated eggs, without affecting the binding of sperm to the oolemma. These observations support the involvement of DE in an event subsequent to sperm-egg binding and leading to fusion in both homologous (mouse-mouse) and heterologous (mouse-rat) sperm-egg interaction. The lack of disintegrin domains in DE indicates that the protein interacts with its egg-binding sites through a novel mechanism that does not involve the reported disintegrin-integrin interaction.  相似文献   

10.
Studies have been carried out to 1) further characterize sperm specific plasma membrane polypeptides (33 and 35 kDa) that are recognized by a monoclonal antibody previously described (Longo, 1989) and 2) follow the incorporation and dispersal of these proteins within plasmalemmae of monospermic and polyspermic sea urchin (Arbacia punctuluta) eggs and oocytes utilizing immunocytochemical methods at the ultrastructural level of observation. Only sperm labeled when incubated with monoclonal antibody to the 33 and 35 kDa proteins followed by colloidal gold-tagged second antibody. Colloidal gold label was observed on the egg plasma membrane immediately after gamete membrane fusion; the amount and extent of label, i.e., the distance from the site of sperm incorporation, increased with time postinsemination. By 20 min postinsemination approximately one hemisphere of the inseminated egg/oocyte was associated with label. The expanding distribution of colloidal gold label on inseminated eggs and oocytes vs. time reflects the free diffusion of 33 and 35 kDa sperm surface proteins among egg/oocyte plasma membrane components. Label was also found in forming endocytotic vesicles, suggesting that sperm plasma membrane proteins may be internalized.  相似文献   

11.
Gamete membrane interaction is critical to initiate the development of a new organism. The signaling pathways governing this event, however, are poorly understood. In this report, we provide the first evidence that protein kinase C activity in mouse eggs plays a crucial role in the regulation of this process. Stimulating PKC activity in mouse eggs by phorbol 12-myristate 13-acetate (PMA) drastically inhibited the egg's membrane ability to bind and fuse with sperm. Surprisingly, this significant reduction of gamete membrane interaction was also observed in eggs treated with the PKC inhibitors staurosporine and calphostin c. In further analysis, we found that while no change of egg actin cytoskeleton was detected after either PMA or calphostin c treatment, the structural morphology of egg surface microvilli was severely altered in the PMA-treated eggs, but not in the calphostin c-treated eggs. Moreover, sperm, which bound but did not fuse with the eggs treated with the anti-CD9 antibody KMC8, were liberated from the egg membrane after PMA, but not calphostin c, treatment. Taken together, these results suggest that egg PKC may be precisely balanced to regulate gamete membrane interaction in a biphasic mode, and this biphasic regulation is executed through two different mechanisms.  相似文献   

12.
Tetraspanin CD81 is closely homologous in amino acid sequence with CD9. CD9 is well known to be involved in sperm-egg fusion, and CD81 has also been reported to be involved in membrane fusion events. However, the function of CD81 as well as that of CD9 in membrane fusion remains unclear. Here, we report that disruption of the mouse CD81 gene led to a reduction in the fecundity of female mice, and CD81-/- eggs had impaired ability to fuse with sperm. Furthermore, we demonstrated that when CD81-/- eggs were incubated with sperm, some of the sperm that penetrated into the perivitelline space of CD81-/- eggs had not yet undergone the acrosome reaction, indicating that the impaired fusibility of CD81-/- eggs may be in part caused by failure of the acrosome reaction of sperm. In addition, we showed that CD81 was highly expressed in granulosa cells, somatic cells that surround oocytes. Our observations suggest that there is an interaction between sperm and CD81 on somatic cells surrounding eggs before the direct interaction of sperm and eggs. Our results may provide new clues for clarifying the cellular mechanism of the acrosome reaction, which is required for sperm-egg fusion.  相似文献   

13.
Sperm-egg interactions occur at multiple levels on the egg surface, first with the egg's extracellular matrix and then with the egg's plasma membrane. The BioPore minisymposium on "The Egg Surface" at the 1999 annual meeting of the Society for the Study of Reproduction highlighted a series of events underlying successful interactions of the sperm with the egg: 1) composition, synthesis, and assembly of the mouse egg's extracellular matrix, the zona pellucida, during oogenesis; 2) oocyte maturation and development of the sperm-binding domain of mouse eggs; and 3) characterization of functional domains in different sperm ligands (fertilin-alpha and fertilin-beta in the mouse and lysin in the abalone) that recognize cognate binding sites on the egg surface. Data that were presented are reviewed here and discussed with respect to conserved and divergent features of gamete functions.  相似文献   

14.
CRISP2, originally known as Tpx-1, is a cysteine-rich secretory protein specifically expressed in male haploid germ cells. Although likely to be involved in gamete interaction, evidence for a functional role of CRISP2 in fertilization still remains poor. In the present study, we used a mouse model to examine the subcellular localization of CRISP2 in sperm and its involvement in the different stages of fertilization. Results from indirect immunofluorescence and protein extraction experiments indicated that mouse CRISP2 is an intraacrosomal component that remains associated with sperm after capacitation and the acrosome reaction (AR). In vitro fertilization assays using zona pellucida-intact mouse eggs showed that an antibody against the protein significantly decreased the percentage of penetrated eggs, with a coincident accumulation of perivitelline sperm. The failure to inhibit zona pellucida penetration excludes a detrimental effect of the antibody on sperm motility or the AR, supporting a specific participation of CRISP2 at the sperm-egg fusion step. In agreement with this evidence, recombinant mouse CRISP2 (recCRISP2) specifically bound to the fusogenic area of mouse eggs, as previously reported for rat CRISP1, an epididymal protein involved in gamete fusion. In vitro competition investigations showed that incubation of mouse zona-free eggs with a fixed concentration of recCRISP2 and increasing amounts of rat CRISP1 reduced the binding of recCRISP2 to the egg, suggesting that the proteins interact with common complementary sites on the egg surface. Our findings indicate that testicular CRISP2, as observed for epididymal CRISP1, is involved in sperm-egg fusion through its binding to complementary sites on the egg surface, supporting the idea of functional cooperation between homologous molecules to ensure the success of fertilization.  相似文献   

15.
Cross-fertilization between sea urchin eggs (Strongylocentrotus nudus) and starfish sperm (Asterina pectinifera) was induced by treatment with polyethylene glycol (PEG). Without treatment with PEG, the denuded egg surface (jelly coat- and vitelline coat-free) engulfed the head of acrosome-reacted sperm; however, sperm penetration did not occur [Kyozuka and Osanai, 1988]. When these eggs were exposed briefly to PEG (molecular weight 3,000) in seawater, the sperm entered the egg by membrane fusion. Cortical granules were discharged, and embryogenesis began following sperm penetration. PEG did not induce parthenogenesis in Strongylocentrotus eggs. Egg activation is thus closely linked with gamete membrane fusion.  相似文献   

16.
Epididymal protein CRISP1 participates in rat and mouse gamete fusion through its interaction with complementary sites on the egg surface. Based on in vivo observations, in the present study we investigated the possibility that CRISP1 plays an additional role in the sperm-zona pellucida (ZP) interaction that precedes gamete fusion. In vitro fertilization experiments using zona-intact rat and mouse eggs indicated that the presence of either an antibody against rat CRISP1 (anti-CRISP1) or rat native CRISP1 (rCRISP1) during gamete co-incubation produced a significant decrease in the percentage of fertilized eggs. However, differently to that expected for a protein involved in gamete fusion, no accumulation of perivitelline sperm was observed, suggesting that the inhibitions occurred at the sperm-ZP interaction level. Bacterially expressed recombinant CRISP1 (recCRISP1) also significantly inhibited egg fertilization. In this case, however, an increase in the number of perivitelline sperm was observed. Subsequent experiments evaluating the effect of anti-CRISP1 or rCRISP1 on the number of sperm bound per egg indicated that the protein is involved in the initial step of sperm-ZP binding. In agreement with these functional studies, indirect immunofluorescence experiments revealed that although rCRISP1 is capable of binding to both the ZP and the oolema, recCRISP1 only binds to the egg surface. The finding that deglycosylated rCRISP1 behaves as the untreated protein, whereas the heat-denatured rCRISP1 associated only with the oolema, indicates that the protein ZP-binding ability resides in the conformation rather than in the glycosydic portion of the molecule. The interaction between rCRISP1 and the ZP reproduces the sperm-ZP-binding behavior, as judged by the failure of the protein to interact with the ZP of fertilized eggs. Together, these results support the idea that CRISP1 participates not only in sperm-egg fusion but also in the prior stage of sperm-ZP interaction.  相似文献   

17.
Antibody inhibition and alpha6beta1 ligand binding experiments indicate that the egg integrin alpha6beta1 functions as a receptor for sperm during gamete fusion; yet, eggs null for the alpha6 integrin exhibit normal fertilization. Alternative integrins may be involved in sperm-egg binding and fusion and could compensate for the absence of alpha6beta1. Various beta1 integrins and alphav integrins are present on mouse eggs. Some of these integrins are also reported to be receptors for ADAMs, which are expressed on sperm. Using alpha3 integrin null eggs, we found that the alpha3beta1 integrin was not essential for sperm-egg binding and fusion. Oocyte-specific, beta1 integrin conditional knockout mice allowed us to obtain mature eggs lacking all beta1 integrins. We found that the beta1 integrin null eggs were fully functional in fertilization both in vivo and in vitro. Furthermore, neither anti-mouse beta3 integrin function-blocking monoclonal antibody (mAb) nor alphav integrin function-blocking mAb inhibited sperm binding to or fusion with beta1 integrin null eggs. Thus, function of beta3 or alphav integrins does not seem to be involved in compensating for the absence of beta1 integrins. These results indicate that none of the integrins known to be present on mouse eggs or to be ADAM receptors are essential for sperm-egg binding/fusion, and thus, egg integrins may not play the role in gamete fusion previously attributed to them.  相似文献   

18.
Sperm limitation may be an important selective force influencing gamete traits such as egg size. The relatively inexpensive extracellular structures surrounding many marine invertebrate eggs might serve to enhance collision rates without the added cost of increasing the egg cell. However, despite decades of research, the effects of extracellular structures on fertilization have not been conclusively documented. Here, using the sea urchin Lytechinus variegatus, we remove jelly coats from eggs, and we quantify sperm collisions to eggs with jelly coats, eggs without jelly coats, and inert plastic beads. We also quantify fertilization success in both egg treatment groups. We find that sperm-egg collision rates increase as a function of sperm concentration and target size and that sperm are not chemotactically attracted to eggs nor to jelly coats in this species. In fertilization assays, the presence of the jelly coat is correlated with a significant but smaller-than-expected improvement in fertilization success. A pair of optimality models predict that, despite the large difference in the energetic value of egg contents and jelly material, the presence of the jelly coat does not diminish selection for larger egg cell size when sperm are limiting.  相似文献   

19.
Integration of sperm and egg plasma membrane components at fertilization   总被引:1,自引:0,他引:1  
Studies examining the integration of the sperm and egg plasma membranes, subsequent to gamete fusion in the surf clam, Spisula solidissima, were carried out employing the concanavalin A-horseradish peroxidase-diaminobenzidine procedure (Con A-HRP-DAB). When unfertilized Spisula eggs were incubated in Con A, either prior to or after aldehyde fixation and reacted with HRP-DAB, enzymatic precipitate was found associated with the vitelline layer and plasmalemma. The plasma membranes of sperm treated in a similar manner failed to stain. The plasma membranes of fertilized eggs reacted with Con A-HRP-DAB and examined by 1 min postinsemination were associated uniformly with enzymatic precipitate except at sites of sperm incorporation. These portions of unstained plasma membrane were derived from the spermatozoon and delimited the contents of the fertilization cone. From 2 to 4 min postinsemination, HRP-DAB reaction product became associated with the plasma membrane delimiting the fertilization cone. By 4 min postinsemination no difference in staining of the plasma membranes derived from the egg or the sperm (plasmalemma delimiting the fertilization cone) was detected. Evidence is presented suggesting that the acquisition of HRP-DAB reaction product by the former sperm plasmalemma is due to the movement of Con A binding sites from the egg plasma membrane.  相似文献   

20.
CD9 has been shown to be essential for sperm/oocyte fusion in mice, the only non-redundant role found for a member of the tetraspanin family. CD9 can act in cis, reconstituting sperm/oocyte fusion when ectopically expressed in oocytes from CD9 null mice, or in trans, inhibiting sperm fusion when the large extracellular domain (LED) is added to CD9-positive oocytes as a soluble protein. In contrast to cis inhibition, the structural requirements of the trans inhibition by soluble CD9 LED are unknown. Here we show that human CD9 LED is as potent an inhibitor as mouse CD9 LED in mouse sperm/oocyte fusion assays and that CD9 LED can also inhibit sperm/oocyte binding. The two disulphide bridges that define membership of the tetraspanin family are critical for structure and function of human CD9 LED and mutation of a pentapeptide sequence in the hypervariable region further defines the critical region for trans inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号