首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of human chorionic gonadotropin (hCG) administration on the pituitary and luteal responses to acute gonadotropin-releasing hormone (GnRH) administration at the mid luteal phase (LP) were studied in 20 infertile women. Patients were divided into 2 groups. In 1 group (n = 8), hCG (5,000 IU i.m.) was injected in a single shot on day 5 of LP. Sixty hours later (day 8 of LP) blood samples were taken every 15 min for 180 min; then 25 micrograms GnRH were acutely administered intravenously and blood samples taken at 185, 195, 210, 225, 240, 255, 270, 285 and 300 min. In the other 12 patients the same experimental design with GnRH was performed on day 8 of an untreated LP. Plasma LH, FSH, beta-hCG, progesterone and estradiol (E2) were assayed. The responsiveness of different hormones to GnRH was evaluated as integrated secretory area for 120 min after injection (sISA) and as the absolute increase with respect to the area under basal conditions before a GnRH administration (bISA). hCG-treated patients showed higher basal and bISA plasma values of LH/hCG than controls (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The gonadotrope cells of the ovine anterior pituitary were insulated from hypothalamic inputs by imposing an immunologic barrier generated by active immunization of ovariectomized ewes against gonadotropin-releasing hormone (GnRH) conjugated to keyhole limpet hemocyanin (KLH) through a p-aminophenylacetic acid bridge. All GnRH-KLH animals immunized developed titers of anti-GnRH that exceeded 1:5000. The antisera were specific for GnRH and cross-reacted with GnRH agonists modified in position 10 to an extent that was less than 0.01%. Ewes actively immunized against GnRH-KLH displayed levels of basal and GnRH agonist-induced gonadotropin secretion that were markedly lower (p less than 0.05) than comparable parameters in ewes actively immunized against KLH. In contrast, basal and thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) secretion were not compromised by active immunization. Immunization against the GnRH-KLH conjugate, but not KLH alone, prevented expression of the positive feedback response to exogenous estradiol (E2). Pituitary stores of immunoactive luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were significantly (p less than 0.001) reduced in ewes immunized against GnRH-KLH but stores of PRL were not affected by such immunization. Further, the biopotency of the residual LH stores in tissue of animals from the anti-GnRH group was significantly (p less than 0.05) lower than LH biopotency in anti-KLH animals. Serum levels of LH in anti-GnRH ewes were restored by circhoral administration of a GnRH agonist that did not cross-react with the antisera generated. Pulsatile delivery of GnRH agonist in anti-GnRH ewes significantly (p less than 0.05) elevated serum LH within 48 h and reestablished LH levels comparable to anti-KLH ewes within 6 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have investigated the pituitary and luteal responses to LH-RH and their related changes. 11 normal women were studied during the luteal phase (day +4/+11). Blood samples were collected every 15 min for a basal period of 180 and 120 min after the intravenous administration of 25 micrograms of LH-RH. Progesterone (P) and LH were assayed by radioimmunoassay. Data were analyzed as maximum peak and its percent increase (delta max), integrated secretory area (ISA) and percent increase of ISA (delta A) in respect to basal values for both P and LH. LH-RH elicited a secretory response of both hormones in all cases. ISA of LH was significantly greater after LH-RH administration in respect to basal values (p less than 0.001) and delta max accounted to 475 +/- (SE) 36% of the basal concentration. Luteal responsiveness varied from about 115-130% to more marked increments. ISA of P differed from basal to stimulated conditions (p less than 0.05) and delta max was 166 +/- (SE) 14%. The analysis of temporal relationship between P and LH secretion showed that LH promptly rose after LH-RH, while the enhancement of P plasma levels occurred within 31 +/- 19 min after LH rise. Then P levels reached a plateau, values of which were statistically different from those observed before LH-RH administration. In two cases where luteal function was blunted or absent, in spite of marked increments of LH, P secretion did not occur. These data are consistent with the presence of close relationships between hypothalamic, pituitary and luteal functions and strengthen the contention about the usefulness of LH-RH during luteal phase for the lifespan and maintenance of corpus luteum.  相似文献   

4.
Seventy crossbred boars were reared under natural (30 lux) or supplemental lighting (1000 lux) beginning at 4 wk of age. Boars received supplemental lighting from six 40-watt fluorescent bulbs between 0530 and 2030 h. Five boars from each treatment were killed at 67, 91, 119, 155, 182, 210, or 246 days of age. No differences (p greater than 0.05) in pituitary concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin (PRL) were found between treatment groups at any age. Total pituitary content of LH, FSH and PRL increased as boars became older, but when expressed as hormone concentration, only PRL increased with age. Content of gonadotropin-releasing hormone (GnRH) in the pituitary stalk-median eminence, preoptic area, and hypothalamus proper was similar (p greater than 0.05) between treatments. When GnRH contents were totaled and combined for the treatment groups, it was found that GnRH content increased (p less than 0.05) as boars became older. No differences (p greater than 0.05) were observed in testicular volume percentage of seminiferous tubules and tubular diameter between lighting treatments. These data demonstrate that the supplemental lighting does not influence puberty in boars by altering hypothalamic content of GnRH or pituitary stores of LH, FSH, and PRL.  相似文献   

5.
In order to study a possible direct action of LH-RH analogs on the pituitary lactotrophs, we investigated the effect of long-term in vivo pretreatment with D-Trp-6-LH-RH on in vitro secretion of PRL and luteinizing hormone (LH) by the pituitary glands from male and female rats. In vivo pretreatment with D-Trp-6-LH-RH (50 micrograms/day, SC) for 15 days greatly reduced basal in vitro PRL release (p less than 0.01) in female, but not in male pituitary glands. TRH-stimulated PRL secretion was not affected by pretreatment with D-Trp-6-LH-RH in female rats, but was impaired in male pituitaries. Acute in vitro exposure to D-Trp-6-LH-RH did not modify PRL secretion by female pituitary glands pretreated in vivo with the analog. However, this same in vivo pretreatment greatly decreased PRL release from male pituitaries (p less than 0.01). Basal in vitro LH release by male pituitary glands was partially lowered by in vivo pretreatment with D-Trp-6-LH-RH, as compared to controls (p less than 0.01), while basal LH release in female pituitaries remained at control levels. Finally, D-Trp-6-LH-RH-induced stimulation of in vitro LH release was severely impaired in female pituitaries (p less than 0.01) but only slightly reduced in the males.  相似文献   

6.
Adult male transgenic mice expressing the human growth hormone (hGH) gene are hypoprolactinemic. To evaluate the effects of exogenous prolactin (PRL) and endogenously secreted hGH on pituitary and Leydig cell function, adult male transgenic and nontransgenic mice (10-16 wk of age) were treated s.c. with either saline-polyvinylpyrrolidone (PVP) or oPRL (100 micrograms/mouse) in saline-PVP. Animals were treated twice daily; a total of 7 injections were given. One hour after the last injection, each group of mice was treated i.p. either with saline or oLH (0.3 microgram/g BW); 2 h later, blood was obtained via heart puncture. Plasma FSH, LH, PRL, androstenedione (A-dione), and testosterone (T) levels were measured by validated RIAs. Basal PRL levels were significantly lower (p less than 0.001) and basal LH concentrations were significantly higher (p less than 0.01) in transgenic than in nontransgenic mice. Administration of PRL significantly decreased (p less than 0.01) plasma LH levels in transgenic mice, whereas similar treatment of nontransgenic mice increased (p less than 0.01) circulating LH concentrations. Plasma FSH levels were unaffected in transgenic and nontransgenic mice treated with saline or PRL. Basal plasma A-dione and T levels were similar in both groups of animals and were significantly increased after treatment with LH. Administration of PRL increased T levels in transgenic and nontransgenic mice, but the T response to LH treatment was greater in PRL-treated transgenic mice, indicating the synergistic effect of hGH in the biosynthesis of T.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) to determine the relative importance of this hypothalamic hormone in the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Five mares immunized against the conjugation protein served as controls. Mares were initially immunized in November and received secondary immunizations 4 wk later, and then at 6-wk intervals until ovariectomy in June. All mares immunized against GnRH exhibited an increase (p less than 0.01) in the binding of tritiated GnRH by plasma, an indication that antibodies against this hormone had been elicited. Concentrations of LH, FSH and progesterone in weekly blood samples were lower (p less than 0.05) in GnRH-immunized mares than in controls after approximately 4 mo of immunization. However, the LH concentrations were affected to a greater degree than were FSH concentrations. All five control mares exhibited normal cycles of estrus and diestrus in spring, whereas no GnRH-immunized mare exhibited cyclic displays of estrus up to ovariectomy. All mares were injected intravenously with a GnRH analog (which cross-reacted less than 0.1% with the anti-GnRH antibodies) in May, after all control mares had displayed normal estrous cycles, to characterize the response of LH and FSH in these mares; two days later, the mares were injected with GnRH. The LH response to the analog, which was assessed by net area under the curve, was lower (p less than 0.01) by approximately 99% in mares immunized against GnRH than in control mares. In contrast, the FSH response to the analog was similar for both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Our hypothesis was that luteal function, as determined by plasma progesterone concentrations, and corpus luteum (CL) size is enhanced in cattle administered an agonist of GnRH when the CL is developing as compared with administration of an agonist when the CL is fully functional. Cattle were chronically administered a GnRH agonist, azagly-nafarelin, from Day 3 to Day 21 (D3) or Day 12 to Day 21 (D12) or served as untreated control females (Day 0 = behavioral estrus). Blood samples were serially collected on Days 7 and 14 to evaluate LH secretory patterns and twice daily to measure plasma progesterone. Ultrasonographic examinations were conducted daily to record the area of the CL. CL size and plasma progesterone concentrations were both enhanced in the D3 group as compared with the control group. Progesterone was increased in the D12 group on Days 16 and 17 as compared with the control females. Treatment with GnRH agonist increased basal and mean LH concentrations in both D3 and D12 groups as compared with the controls. We rejected our hypothesis because chronic administration of a GnRH agonist increased plasma progesterone when administered both when the CL was developing and when it was fully functional. The enhanced luteal function was likely due to increased basal LH.  相似文献   

9.
In previous studies it has been observed that acute administration or short-term treatment with calcium channel blockers can influence the secretion of some pituitary hormones. In this study, we have examined the effect of the long-term administration of diltiazem on luteinizing-hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH) and prolactin (PRL) levels under basal conditions and after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing-hormone (TRH) stimulation in 12 subjects affected by cardiovascular diseases who were treated with diltiazem (60 mg 3 times/day per os) for more than 6 months and in 12 healthy volunteers of the same age. The basal levels of the studied hormones were similar in the two groups. In both the treated patients and the control subjects, a statistically significant increase (p < 0.01) in LH, FSH, TSH and PRL levels was observed after GnRH/TRH administration. Comparing the respective areas under the LH, FSH, TSH and PRL response curves between the two groups did not present any statistically significant difference. These findings indicate that long-term therapy with diltiazem does not alter pituitary hormone secretion.  相似文献   

10.
In the sheep pituitary, the localization of prolactin (PRL) receptors in gonadotrophs and the existence of gonadotroph-lactotroph associations have provided morphological evidence for possible direct effects of PRL on gonadotropin secretion. Here, we investigated whether PRL can readily modify the LH response to GnRH throughout the ovine annual reproductive cycle. Cell populations were obtained from sheep pituitaries during the breeding season (BS) and the nonbreeding season (NBS), plated to monolayer cultures for 7 days, and assigned to receive one of the following treatments: 1) nil (control), 2) acute (90- min) bromocriptine (ABr), 3) chronic (7-day) bromocriptine (CBr), 4) ABr and PRL, 5) CBr and PRL, 6) PRL alone, or 7) thyrotropin-releasing hormone. Cells were treated as described above, with the aim of decreasing or increasing the concentrations of PRL in the culture, and simultaneously treated with GnRH for 90 min. The LH concentrations in the medium were then determined by RIA. GnRH stimulated LH in a dose-dependent manner during both stages of the annual reproductive cycle. During the NBS, single treatments did not significantly affect the LH response to GnRH. However, when PRL was combined with bromocriptine, either acutely or chronically, GnRH failed to stimulate LH release at all doses tested (P < 0.01). In contrast, during the BS, the LH response to GnRH was not affected by any of the experimental treatments. These results reveal no apparent effects of PRL alone, but an interaction between PRL and dopamine in the regulation of LH secretion within the pituitary gland, and a seasonal modulation of this mechanism.  相似文献   

11.
GnRH-stimulation tests were performed in 14 female and 14 male client-owned dogs of several breeds, before and 4 to 5 mo after gonadectomy. The aim of the study was to obtain more insight into the pituitary-gonadal axis in intact and neutered dogs and to establish reference values. Basal plasma luteinizing hormone (LH) and follicle-stimulating hormone (FSH) concentrations were increased significantly after gonadectomy in both bitches and male dogs. In both males and females ranges of the basal plasma FSH concentrations, before and after gonadectomy, did not overlap as opposed to the overlap in ranges of the basal plasma LH concentrations. Before gonadectomy basal plasma LH concentrations were lower and basal plasma FSH concentrations were higher in bitches than in male dogs. After gonadectomy these basal values did not differ significantly. GnRH administration before gonadectomy resulted in an increase in plasma LH and FSH concentrations in both genders. GnRH administration after gonadectomy produced an increase only in plasma LH concentrations in both genders, and a just significant increase in plasma FSH in castrated male dogs. GnRH administration before gonadectomy resulted in a significant increase in plasma testosterone concentration in both genders. In males ranges of basal and GnRH-stimulated plasma testosterone concentrations before and after gonadectomy did not overlap. Basal plasma estradiol concentrations were significantly higher in intact males than in castrated males and their ranges did not overlap. The basal estradiol concentrations in bitches before and after ovariectomy were not significantly different. At 120 min after GnRH administration, ranges of plasma estradiol concentration of intact and ovariectomized bitches no longer overlapped. In conclusion, basal plasma FSH concentration appears to be more reliable than basal plasma LH concentration for verification of neuter status in both male and female dogs. The basal plasma testosterone concentration appears to be reliable for verification of neuter status in male dogs. The plasma estradiol concentration at 120 min after GnRH administration can be used to discriminate between bitches with and without functional ovarian tissue.  相似文献   

12.
Anestrous lighthorse mares were treated in December with dihydrotestosterone (DHT; 150 micrograms/kg of body weight), progesterone (P; 164 micrograms/kg), both DHT and P (DHT+P), testosterone (T; 150 micrograms/kg), or vehicle (n = 4/group). Daily blood sampling was started on Day 1, and on Day 4 all mares were administered a pretreatment injection of gonadotropin-releasing hormone (GnRH) and were bled frequently to characterize the responses of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations. Treatment injections were given on Day 4 and then daily through Day 17. On Day 18, all mares were again administered GnRH and were bled frequently. Treatment of mares with DHT, P, or T increased (p less than 0.01) plasma concentrations of these steroids to approximately 1.5 ng/ml during the last 10 days of treatment. There was no effect (p greater than 0.10) of treatment on LH or FSH concentrations in daily blood samples. Relative to the pretreatment GnRH injection, mares treated with T or DHT+P secreted approximately 65% more (p less than 0.01) FSH in response to the post-treatment GnRH injection; FSH response to the second GnRH injection was not altered (p greater than 0.10) in control mares or in DHT- or P-treated mares. There was no effect of any steroid treatment on LH secretion after administration of GnRH (p greater than 0.10). Averaged over all mares, approximately 94 times more FSH than LH was secreted in response to injection of GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Administering gonadotropin-releasing hormone (GnRH) improved conception rates in our previous studies. Our objective was to determine if the effect of GnRH was mediated through serum luteinizing hormone (LH) and/or by altered secretion of serum progesterone (P) and estradiol-17 beta (E) during the periestrual and post-insemination periods. Cattle were given either GnRH (n = 54) or saline (n = 55) at 72 h and inseminated artificially (AI) 80 h after the second of two injections of either prostaglandin F2 alpha or its analog, cloprostenol. Progesterone and E were measured in blood serum collected during 3 wk after AI (estrus) from 60 females. Blood was collected for LH determinations via indwelling jugular cannulae from 14 cows and 11 heifers. Collections were taken every 4 h from 32 to 108 h after the second PGF injection (PGF-2) (periestrual period) and at more frequent intervals during 240 min after administration of GnRH (n = 18) or saline (n = 7). Ten females had a spontaneous preovulatory LH surge before GnRH treatment (GnRH-spontaneous), whereas GnRH induced the preovulatory LH surge in six females. A spontaneous LH surge appeared to be initiated in two heifers at or near the time of GnRH treatment (spontaneous and/or induced). The remaining seven cows had spontaneous LH surges with no subsequent change in LH after saline treatment. Serum P during the 21 days after estrus was lower (p less than 0.05) in both pregnant and nonpregnant (open) cattle treated previously with GnRH compared with saline. Serum P during the first week after estrus was greater (p less than 0.01) and increased (p less than 0.05) more rapidly in saline controls and in GnRH-spontaneous cattle than in those exhibiting GnRH-induced or GnRH-spontaneous and/or-induced surges of LH. Conception rate of cattle receiving GnRH was higher (p = 0.06) than that of saline-treated controls. These data suggest that GnRH treatment at insemination initiated the preovulatory LH surge in some cattle, but serum P in both pregnant and open cows was compromised during the luteal phase after GnRH treatment. Improved fertility may be associated with delayed or slowly rising concentrations of serum progesterone after ovulation.  相似文献   

14.
Hypothalamic-pituitary-testicular axis in patients with hyperthyroidism   总被引:2,自引:0,他引:2  
To test whether chronic thyroid hormone excess influences the hypothalamic-pituitary-testicular axis, 8 hyperthyroid men were given two identical intravenous GnRH tests. The first test was performed before any treatment had been instituted, the second 6-13 months later, when medical treatment had made the patients euthyroid. Although basal serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) levels were of similar magnitudes before and after the medical treatment, LH and FSH responsiveness to gonadotropin-releasing hormone (GnRH), as reflected by the hormone incremental areas (U/l X min), were significantly larger in the thyrotoxic state compared with the euthyroid state (LH incremental areas: 3,999 +/- 665 vs. 2,640 +/- 430, p less than 0.02; FSH incremental areas: 825 +/- 193 vs. 542 +/- 98, p less than 0.05). Furthermore, serum T increased significantly in response to GnRH when the patients were hyperthyroid (T incremental area: 162 +/- 51, p less than 0.02), but failed to do so when they were euthyroid (T incremental area: 92 +/- 53, NS). These results imply that chronic thyroid hormone excess makes the pituitary gonadotrophs 'hypersensitive' to exogenous GnRH. This may in turn explain why human Leydig cells respond more powerful to exogenous GnRH in thyrotoxic patients than in euthyroid subjects.  相似文献   

15.
We evaluated the effects of the dopaminergic drug bromocriptine (Br) on prolactin (PRL), luteinizing hormone (LH) and testosterone (Te) levels in a homogeneous group of opiate addicts in a methadone maintenance program (20 mg twice daily). Basal blood levels of PRL, LH and Te were determined in 15 adult male drug addicts, before 30 and 60 days after Br administration (7.5 mg/day) was started. 15 healthy volunteers served as controls for the evaluation of basal values of the hormones. Before treatment PRL values were high, while LH and Te levels were lower than normal. 30 days later, PRL lowered significantly while LH and Te increased significantly. 60 days later, the blood hormone values were still significantly different from pretreatment values, and close to the normal range. This observation shows that Br, probably through an increase of dopaminergic tone, may counteract some effects of opiates on the hypothalamic-pituitary-gonadal axis.  相似文献   

16.
Plasma PRL, TSH, total and free T4, total and free T3, and 17 beta-estradiol were evaluated in 29 premenopausal women with well-documented fibrocystic disease of the breast and in 29 healthy matched controls. Plasma PRL and TSH dynamics after acute TRH injection (200 micrograms i.v.) were also determined. All hormonal measurements were performed in the follicular phase of the menstrual cycle. Neither patients nor controls showed any thyroid function impairment. Basal plasma levels of the examined hormones were in the normal range in both groups. When considering data pertinent to PRL and TSH secretory patterns after TRH stimulation, no difference was recorded between patients and controls for TSH secretion, evaluated in terms of maximum peak, net (delta) and percent (delta %) increase above the baseline level and integrated area of response. On the contrary, the response of PRL was significantly higher in patients than controls (maximum peak at 20 min, mean +/- SE, 119.9 +/- 14.1 vs. 60.8 +/- 5.5 ng/ml, p less than 0.001; integrated area of response, 5,725 +/- 908 vs. 3,243 +/- 266 ng/ml/120 min, p less than 0.01). The results are compatible with the view that, in most patients with fibrocystic disease of the breast, there are abnormalities in the control of PRL secretion, which lead to enhanced release of the hormone after stimulation. In such cases the control of TSH appears to be operating normally.  相似文献   

17.
Timing of ovulation and changes in plasma progesterone, luteinizing hormone (LH), and prolactin (PRL) during periovulatory stages were determined in Holtzman rats exhibiting regular 4- or 5-day cycles under a daily artificial illumination from 0500 to 1900 h. The 5-day cycling rats ovulated between 0130 and 0930 h on estrus, whereas some of the 4-day cycling animals ovulated as early as about 0130 h and others as late as 1130 h on estrus. Onset time of preovulatory LH and progesterone surges was about 1500 h on proestrus in both the 4- and the 5-day cycling rats. Peak levels of plasma LH and progesterone were measured at 1700 to 1900 h on proestrus, while the first rises and peak values of plasma PRL were evident a few hours earlier than those of plasma LH in the rats with two cycle lengths. Plasma LH levels at 1900 h on proestrus as well as plasma progesterone levels at 1600 and 2300 h on proestrus and at 0130 and 0330 h on estrus were significantly lower in the 5-day cycling rats than in the 4-day cycling animals (p less than 0.05). In contrast, PRL levels from 1500 through 2300 h on proestrus remained consistently higher in 5-day cycling rats than in 4-day cycling rats, and significant differences in PRL levels between these rats were apparent at 1500, 1600, and 2100 h (p less than 0.05-0.01). Thus, these results demonstrate that the 5-day cycling rats exhibit the attenuated magnitude of LH surge accompanied by the augmented preovulatory PRL release, and that plasma progesterone levels reflect the magnitude of LH surge. A tentative working hypothesis concerning the etiology of the 5-day cycle has been proposed.  相似文献   

18.
Basal progesterone (P4) production by isolated goat ovarian cells in vitro was in the order corpus luteum (CL) greater than granulosa (G) greater than theca (TH), while estradiol (E2) production was in the order TH greater than G greater than CL. In G cells, various concentrations (0.01 to 100 micrograms/ml) of luteinizing hormone (LH), human chorionic gonadotropin (hCG) and follicle-stimulating hormone (FSH) increased P4 and E2 secretion. Testosterone (T, 10(-9) to 10(-5) M) produced dose-dependent increases in P4 and E2 secretion. Testosterone and LH together had an additive effect on E2 secretion. The combined effect of the lower (less than 10(-6) M) concentrations of T and LH on P4 production was marginally higher than either agent alone, but the increase was statistically insignificant; at higher concentrations of T (10(-6) and 10(-5) M) in combination with LH, P4 secretion was similar to that with LH alone, but was significantly (p less than 0.01 and less than 0.001, respectively) less compared to that with T alone. Follicle-stimulating hormone and T together produced a synergistic effect on E2 and an additive effect on P4 production. In TH cells, a dose-dependent increase in P4 and E2 production was observed with LH and hCG, but the effect of FSH was not significant. Testosterone produced a dose-dependent increase in P4 and E2 secretion. Testosterone and LH together induced higher steroid production than either agent alone. However, the increase was not statistically significant compared to T alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of exogenous dehydroepiandrosterone-sulfate (DHAS) on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL) and thyroid-stimulating hormone (TSH) pituitary secretion was studied in 8 normal women during the early follicular phase. The plasma levels of these hormones were evaluated after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing hormone (TRH) stimulation performed after placebo or after 30 mg DHAS i.v. administration. The half-life of DHAS was also calculated on two subjects; two main components of decay were detected with half-times of 0.73-1.08 and 23.1-28.8 h. The results show an adequate response of all hormones to GnRH or TRH tests which was not significantly modified, in the case of LH, FSH and PRL, when performed in the presence of high levels of DHAS. However, the TSH response to TRH was significantly less suppressed (p less than 0.05) (39%) after DHAS administration than during repeated TRH stimulation without DHAS (51%). The data support the hypothesis that DHAS does not affect LH, FSH and PRL secretion, while TSH seemed to be partially influenced.  相似文献   

20.
In order to reevaluate the earlier varying data regarding circulatory gonadotropin-releasing hormone (GnRH), we assayed extracted GnRH from the plasma frequently collected at mid-cycle in 11 women. For the analysis of episodic GnRH patterns and basal levels, blood samples were obtained at 6 h intervals for 72 h and at 15 min intervals for 2 h every 12 h throughout the experimental period. All blood samples were assayed for GnRH and selected samples for LH, FSH, estradiol and progesterone. For GnRH assay, 5 or 6 ml of blood was mixed with 60 mg of ethylenediaminetetraacetic acid, disodium salt, and 3 mg of phenylmethylsulfonyl floride immediately after blood collection. These enzyme inhibitors prevented the destruction of GnRH in the blood at room temperature for at least 4 h. Plasma GnRH was extracted through several steps including florisil absorption, acidic extraction and washing with organic solvent. Nonspecific immunoreactivity in the plasma was markedly decreased through this extraction process. Our assay values (approximate range, 0.1-2.0 pg/ml) of plasma GnRH in normal women corresponded to the low range of those obtained by others who used the alcohol extraction method. The basal levels of GnRH did not change significantly throughout 3 different periods, i.e., before, during and after the LH surges, and fluctuated between a small range of 0.11 and 1.44 pg/ml. Although the peak levels of GnRH observed in its episodic patterns did not change between the periods before and during the LH surges, they decreased significantly after the LH surge compared with those seen during the LH surges (0.93 +/- 0.07 vs 1.17 +/- 0.09 pg/ml, p less than 0.05). The present data demonstrate that immunoreactive GnRH in the extracted peripheral plasma does not change significantly in its mean, basal and peak levels during the periovulatory period except for a minor but significant decrease in the peak levels shortly after an LH surge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号