首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
栗鹀发声中枢对叫声的调控模式   总被引:3,自引:0,他引:3  
鸣禽栗鹀(Emberiza rutila)高级发声中枢(HVC)的单一型调控模式产生单、双音节的单次叫声, 并对叫声的双音节、主频率提升和声强度增高的调控显示出明显的左侧优势. 栗鹀HVC的复合型调控模式产生多音节复合叫声, 对叫声的音节数、音调变化和声强度的调控具有明显的左侧优势, 提示左侧HVC控制频率较高和较复杂的句型结构. 鸣禽鸟的基本发声中枢(DM)对叫声的调控模式是产生单次叫声, 对叫声音节数和声强度的调控呈明显的左侧优势. 这不仅在声学上为鸣禽高级发声中枢的左侧优势理论提供了直接证据, 而且提示鸣禽高级发声中枢与基本发声中枢的左侧优势之间存在一定的内源性联系.  相似文献   

2.
成年雄性鸣禽的习得性发声信号——长鸣(long call)和鸣唱(song)是由前脑高级发声中枢启动,以及由前脑最后一级输出核团弓状皮质栎核(robust nucleus of the arcopallium,RA)整合输出.RA投射神经元与位于中脑的基本发声中枢丘间复合体背内侧核(dorsomedial nucleus of the intercollicular,DM)形成突触连接.该文采用电损毁与声谱分析相结合的方法,通过依次损毁成年雄性斑胸草雀(Taeniopygia guttata)单侧RA和DM核团,探讨了前脑和中脑对习得性发声的影响.结果提示,RA核团与DM核团共同参与了对雄性斑胸草雀习得性声音的调控,而且这种控制具有右侧优势.  相似文献   

3.
耿慧  李东风  蒋锦昌 《动物学报》2006,52(1):99-108
利用计算机声谱分析技术比较了家鸽刺激中脑丘间复合体背内侧核(DM)诱发叫声和其正常自鸣声。家鸽的单次自鸣声“di·Gu—”,包括前奏、高潮声和尾声,其主频率和相对幅值都呈明显的逐步递增、平稳和逐步下降过程。高潮声平稳期的载波主频率(318Hz)所表征的主音调比前奏和尾声的主频率(239Hz)分别平均高4.9个半音,相对幅值分别平均高24.4dB和13.2dB,品质因数(Q6dB)分别增高1.8倍和2.8倍。随着刺激电压的增大和减小,家鸽单次鸣声持续时间呈显著的线性递减和递增。诱发叫声的主频率显著性低于自鸣声,声图中有1-2个陪音。本实验为阐明非鸣禽发声调控提供声学特征上的依据  相似文献   

4.
用焦油紫染色,图像分析及统计学方法比较研究了两种鸣禽栗巫鸟和燕雀发声控制核团的体积差异.结果表明,在发声活动中起重要作用的核团前脑HVc、RA 和X区的体积存在显著的种间差异:发声技巧较高的雄性栗巫鸟的相应核团均相对大于雄性燕雀;而在发声中作用较小的nⅫts及雌性鸣禽的相应所有核团均无显著种间差异. 这一结果表明,发声能力的高低与前脑发声核团的体积直接相关.  相似文献   

5.
鸣禽是除了人类以外极少数具有发声信号学习能力的动物,其已成为研究运动序列控制和学习记忆神经过程的理想模型。鸣禽端脑中的高级发声中枢(high vocal center)、弓状皮质栎核(robust nucleus of the arcopallium)和脑干中的运动核团构成了控制发声的运动通路。该文对鸣禽端脑发声运动通路的电生理学特性及其在发声控制和鸣唱学习中的作用进行了全面的分析综述。  相似文献   

6.
锡嘴雀延脑发声中枢注入HRP对上位脑细胞标记的研究   总被引:2,自引:0,他引:2  
在雌、雄锡嘴雀(Coccothraustes coccthraustes)的延脑发声中枢中间核(Interm edius nucleas,IM),注入辣根过氧化物酶(Horseradish peroxidase,HRP),标记上位脑控制发声核团有原纹状体粗核(Nucleus robustus atchistriatalis,RA)和背中核(Nucleus dersalis medialis,DM)。其中RA双侧被标记,并有明显的左侧优势,特别是在雄性鸟中这种优势更为突出。  相似文献   

7.
鸟类的鸣叫依赖于发育完善的鸣管并接受各级发声中枢组成的机能控制系统的调控,善鸣唱的鸟类前脑控制发声的神经核团发达.用石蜡切片法和生物信号采集处理系统对不同生长发育期的虎皮鹦鹉的发声控制神经核团的体积和声音进行了比较性研究.结果发现:(1)随着虎皮鹦鹉的成长,核团体积逐渐增大,核团轮廓逐渐清晰,而且雄鸟的核团明显大于雌鸟;(2)在鸟类成长的过程中,鸟的叫声越来越复杂,幅度越来越高,雄鸟的叫声比雌鸟更复杂,雌鸟的叫声比雄鸟的叫声幅度更高;(3)鸟类鸣叫的复杂程度和发声控制神经核团的体积呈相关性.  相似文献   

8.
古纹状体粗核损毁对燕雀鸣声的影响   总被引:6,自引:1,他引:5  
古纹状体粗核(RA)损毁对燕雀常用短叫声的声学特性基本无影响, 但对习得性长叫声的时域和声学特性产生显著的失控性影响. RA损毁可导致单音调长叫声的基本音主频率约提升500音分, 并失去2个陪音. RA损毁不仅导致变音调长叫声的高潮声和尾声的声长分别平均增长13.4%~22.1%和缩短21.2%~24.2%, 而且高潮声的偶次谐分音的频率提升系数平均下降18.5%~25.8%, 递升速率随频率增高平均下降22.7%~24.0%. 进而表明, RA对习得性发声时域和频率特性的调控是相互匹配的. 同时, 双侧RA损毁可引起发声模式混乱, 所产生的长叫声具有单音调和变音调长叫声的双重特性, 前奏呈频率提升, 高潮声为单音调声.  相似文献   

9.
鸣禽的发声及其学习过程涉及前脑不同部位的几个核团,其中高级发声中枢(high vocal center,HVC)是发声控制的主导核团(Nottebohm等,1976);古纹状体粗核(robust nucleus of archistriatalis,RA)是前脑多种信息的会聚点(Wild,1994),并在呼吸与发声协调等方面有相当重要的作用(Vicario,1991).国外曾对金丝雀、斑胸草雀RA的纤维联系有过系统的研究(Nottebohm等,1982;Wild,1993),国内张信文等(1994)也曾对黄雀RA的纤维联系进行过报道.  相似文献   

10.
采用辣根过氧化物酶顺、逆行标记方法对鸣禽鸟蜡嘴雀控制发声的神经核团、脑干听觉核团及神经通路,从外周至中枢逐级进行了追踪研究。结果表明:1.控制发声的神经核团及通路,前脑古纹状体腹内侧粗核是大脑控制发声的重要核团之一,它发出枕中脑后束经端脑前联合呈双侧支配延脑中间核,中间核又发出舌下神经经气管鸣管分支支配鸣肌,中间核同时也接受中脑背内侧核的支配;2.脑干听觉中枢及通路,中脑背外侧核是脑干较高级听觉中  相似文献   

11.
In recent studies, some progress has been made in the vocal mechanism of songbird by using both electrophysiological and acoustics technique[1—3]. High vocal center (HVC) is the highest center in the vocal control pathway in songbirds. Unilateral stimulating HVC may evoke bilateral electrical activity of HVC neurons[4,5]. The lesion of HVC critically affects the capacity of singing, and birds could produce only simple calls. In addition, the basic frequency decreases, rapid modulation o…  相似文献   

12.
High vocal center (HVC) can produce single sound with one or two syllables by the single-type vocal control pattern in songbirds ruddy bunting (Emberiza rutila). It obviously shows left-side dominance in controlling double syllables, principal frequency (PF) and increasing sound intensity of the evoked calls. Meanwhile, the complex-type control pattern can produce complex calls with multisyllable, and also shows significant left-side dominance in controlling the number of syllables, tone changing and sound intensity. These indicate that left-side HVC controls higher frequency and complicated sentence structure. The basic vocal center, dorsomedial nucleus of the intercollicular complex (DM), controls the monosyllable sound in songbirds, and shows left-side dominance in controlling both the number of syllable and sound intensity. These results not only provide some direct evidence for left-side dominance in high vocal center, but also indicate that there is some internal connection between the high and basic vocal centers in songbirds.  相似文献   

13.
A discrete neural circuit mediates the production of learned vocalizations in oscine songbirds. Although this circuit includes some bilateral pathways at midbrain and medullary levels, the forebrain components of the song control network are not directly connected across the midline. There have been no previous reports of bilateral projections from medullary and midbrain vocal control nuclei back to the forebrain song system, but the existence of such bilateral corollary discharge pathways was strongly suggested by the recent observation that unilateral stimulation of a forebrain song nucleus during singing leads to a rapid readjustment of premotor activity in the contralateral forebrain. In the present study, we used neuroanatomical tracers to demonstrate bilateral projections from (a) the rostral ventrolateral medulla (RVL), which may control respiratory aspects of vocalization, to nucleus uvaeformis (Uva), and (b) the dorsomedial intercollicular nucleus (DM), a midbrain vocal control region, to Uva. Both RVL and DM receive descending projections from the forebrain song nucleus robustus archistriatalis, and Uva projects directly to the forebrain song nuclei interfacialis and high vocal center. We suggest that the bilateral feedback projections from DM and RVL to Uva function to coordinate the two hemispheres during singing in adult songbirds and to convey internal feedback of premotor signals to the forebrain in young birds that are learning to sing. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 27–40, 1998  相似文献   

14.
鸣禽鸣唱控制系统的前端脑通路(anterior forebrain pathway, AFP)在鸣唱学习中发挥着重要作用。新纹状体巨细胞核外侧部(lateral magnocellular nucleus of the anterior neostriatum, LMAN)是AFP的最后一级输出核团,AFP中的信号通过LMAN传导到弓状皮质栎核(robust nucleus of the arcopallium, RA),与高级发声中枢(high vocal centre,HVC)共同调节RA的活动,从而影响鸣禽的发声行为。LMAN可能通过其与RA的单突触连接来影响鸣唱可塑性。文章对近年来LMAN在鸣唱学习可塑性方面的研究进行综述。  相似文献   

15.
用双向神经示踪剂生物素结合的葡聚糖胺和SP-免疫组织化学方法研究白腰文鸟发声学习中枢嗅叶X区的神经投射和P物质在发声中枢及相关核团内的分布。结果表明:X区接受发声与听觉整合中枢上纹状体腹侧尾核(HVC)以及中脑AVT的传入投射,由X区发出的神经纤维投射到丘脑外侧核内侧部(DLM)。在HVC、DLM、新纹状体前部巨细胞核和发声控制中枢古纹状极核内有许多的SP-免疫阳性神经细胞,在X区、中脑背内侧核和延髓舌下神经核等有大量的SP-免疫阳性神经纤维或终末等。提示P物质可能在发声中枢内起重要的生理作用。  相似文献   

16.
Vocalizations convey information about an individual's motivational, internal, and social status. As circumstances change, individuals respond by adjusting vocal behavior accordingly. In European starlings, a male that acquires a nest site socially dominates other males and dramatically increases courtship song. Although circulating testosterone is associated with social status and vocal production it is possible that steroid receptors fine-tune status-appropriate changes in behavior. Here we explored a possible role for androgen receptors. Male starlings that acquired nest sites produced high rates of courtship song. For a subset of males this occurred even in the absence of elevated circulating testosterone. Immunolabeling for androgen receptors (ARir) was highest in the medial preoptic nucleus (POM) in males with both a nest site and elevated testosterone. For HVC, ARir was higher in dominant males with high testosterone (males that sang longer songs) than dominant males with low testosterone (males that sang shorter songs). ARir in the dorsal medial portion of the nucleus intercollicularis (DM) was elevated in males with high testosterone irrespective of dominance status. Song bout length related positively to ARir in POM, HVC and DM, and testosterone concentrations related positively to ARir in POM and DM. Results suggest that the role of testosterone in vocal behavior differs across brain regions and support the hypothesis that testosterone in POM underlies motivation, testosterone in HVC relates to song quality, and testosterone in DM stimulates vocalizations. Our data also suggest that singing may influence AR independent of testosterone and that alternative androgen-independent pathways regulate status-appropriate singing behavior.  相似文献   

17.
Meng W  Wang XD  Xiao P  Li DF 《生理学报》2006,58(3):232-236
鸣禽高级发声中枢(high vocal center,HVC)至弓状皮质栎核(robust nucleus ofthe arcopallium,RA)的突触传递是鸣唱运动通路中的关键部分.本文运用在体场电位电生理记录的方法,研究了成年雄性斑胸草雀(Taeniopygia guttata)HVC-RA突触的电生理特性.实验结果显示,刺激HVC,在RA内所记录到的诱发场电位幅度较小.配对脉冲检测发现,HVC-RA突触传递具有明显的配对脉冲易化特性.当以强直刺激作用于HVC,RA内诱发场电位随即显著减小,并在15 min内逐渐恢复,表明HVC-RA突触传递在强直刺激过后出现了短时抑制.该通路的突触传递特性可能与其在发声控制中的作用有关.以上的实验结果为进一步研究发声运动过程中的突触可塑性提供了资料.  相似文献   

18.
用免疫组织化学方法研究P物质在雌雄黄雀发声控制核团和听觉中枢内的分布,结合计算机图像分析仪检测SP免疫阳性细胞和末梢的灰度值,并作雌雄比较。结果如下:1.在发声学习中枢嗅叶X区有大量的SP阳性神经末梢和一些神经细胞。2.在发声控制核团前脑高级发声中枢(HVc)、古纹状体栎核、发声学习中枢新纹状体巨细胞核和丘脑背内侧核外侧部内有许多的SP免疫阳性细胞。3.在发声控制中枢中脑背内侧核和延髓舌下神经核气管呜管部、听觉中枢丘脑卵圆核的壳区、中脑背外侧核壳区及中脑丘间核等有密集的SP免疫阳性神经末梢和纤维分布;雄性发声中枢内SP的分布比雌性丰富,两者有显著的差异。结果表明:SP的分布在雌雄发声中枢之间存在显著的性双态;SP广泛分布于黄雀发声控制核团和部分听觉中枢内,提示SP可能在发声控制及听觉中枢内具有重要的生理功能。  相似文献   

19.
用生物素示踪法和P物质 (SP)免疫组化技术研究表明 :黄喉的高级发声中枢 (HVc)接受端脑听区 (L)、新纹状体中部界面核、新纹状体巨细胞核 (MAN)、丘脑葡萄形核、桥脑蓝斑核的传入 ,并有神经纤维投射到古纹状体栎核 (RA)和嗅叶X区 (X) ;HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系 ,提示黄喉发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体 ,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声 -听觉中枢 ,可能参与了它们的活动  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号