首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Until recently, little light had been shed on the murky origins of human malaria. Did Plasmodium falciparum, the most virulent malaria parasite, emerge as a common pathogen only in the past few thousand years, as suggested by some analyses of its nucleotide sequence diversity? Or, was it an ancient scourge of early humans >100 000 years ago, as suggested by others? A recent study, using complete mitochondrial DNA sequence polymorphism data and new analytical methods, points to an intermediate date of origin and expansion out of Africa. Subsequent population growth in each continent is less well resolved.  相似文献   

2.
Homologous sequences of the acute RNA tumor virus oncogenes have been found to be highly conserved within vertebrates, insects and yeasts. In the present work, seven different oncogene DNA sequences have been used as probes to search for homologous sequences in the DNA of the protozoan Plasmodium falciparum. Both the v-fms v-Ha ras probes hybridized P. falciparum DNA. The oncogene study will allow an understanding of the biology of the parasite and particularly the host-parasite relationships which allow P. falciparum to develop, keeping the established harmony between the parasite and his host.  相似文献   

3.
The malaria genome has proved invaluable to researchers worldwide in the continuing fight against malaria by stimulating and underpinning molecular approaches in gene expression studies, vaccine and drug discovery research, and by providing data to facilitate hypothesis-driven research. The combination of in silico and experimental investigations has already yielded dividends by strengthening our understanding of the many facets of the malaria parasite Plasmodium falciparum. The recently initiated curation of the genome resource is a vital investment for maintaining and enhancing the use of this genomic information in the post-genomic era.  相似文献   

4.
With the publication of the complete sequences for chromosomes 2 and 3 and the increasing availability of shotgun sequence covering most of its genome, Plasmodium falciparum biology is entering its post-genomic era. Analysis of the results generated to date has identified higher-order organisation of gene families involved in parasite pathology, provided information regarding the unique biology of this parasite and allowed the identification of potential chemotherapeutic drug targets. Continuing efforts to complete the P. falciparum genome and the availability of sequences from other protozoan parasites will facilitate a broader understanding of their biology, particularly with respect to their pathogenicity.  相似文献   

5.
Genetically-modified mutants are now indispensable Plasmodium gene-function reagents, which are also being pursued as genetically attenuated parasite vaccines. Currently, the generation of transgenic malaria-parasites requires the use of drug-resistance markers. Here we present the development of an FRT/FLP-recombinase system that enables the generation of transgenic parasites free of resistance genes. We demonstrate in the human malaria parasite, P. falciparum, the complete and efficient removal of the introduced resistance gene. We targeted two neighbouring genes, p52 and p36, using a construct that has a selectable marker cassette flanked by FRT-sequences. This permitted the subsequent removal of the selectable marker cassette by transient transfection of a plasmid that expressed a 37°C thermostable and enhanced FLP-recombinase. This method of removing heterologous DNA sequences from the genome opens up new possibilities in Plasmodium research to sequentially target multiple genes and for using genetically-modified parasites as live, attenuated malaria vaccines.  相似文献   

6.
The putative mitochondrial genome of Plasmodium falciparum   总被引:2,自引:0,他引:2  
Intraerythrocytic stages of mammalian malarial parasites employ glycolysis for energy production but some aspects of mitochondrial function appear crucial to their survival since inhibitors of mitochondrial protein synthesis and electron transport have antimalarial effects. Investigations of the putative mitochondrial genome of Plasmodium falciparum have detected organellar rRNAs and tRNAs encoded by a 35 kb circular DNA. Some features of the organization and sequence of the rRNA genes are reminiscent of chloroplast DNAs. The 35 kb DNA also encodes open reading frames for proteins normally found in chloroplast but not mitochondrial genomes. An apparently unrelated 6 kb tandemly repeated element which encodes two mitochondrial protein coding genes and fragments of rRNA genes is also found in malarial parasites. The malarial mitochondrial genome thus appears quite unusual. Further investigations are expected to provide insights into the possible functional relationships between these molecules and perhaps their evolutionary history.  相似文献   

7.
8.
Until recently very little was known about the genome of Plasmodium falciparum. The situation has changed considerably with the advent of pulsed field gradient electrophoresis and yeast artificial chromosome technologies. It should now be possible to generate a high-resolution map within a few years. Here, Tony Triglia, Thomas Wellems and David Kemp review current knowledge.  相似文献   

9.
10.
The A+T-rich genome of the human malaria parasite Plasmodium falciparum encodes genes of biological importance that cannot be expressed efficiently in heterologous eukaryotic systems, owing to an extremely biased codon usage and the presence of numerous cryptic polyadenylation sites. In this work we have optimized an assembly polymerase chain reaction (PCR) method for the fast and extremely accurate synthesis of a 2.1 kb Plasmodium falciparum gene (pfsub-1) encoding a subtilisin-like protease. A total of 104 oligonucleotides, designed with the aid of dedicated computer software, were assembled in a single-step PCR. The assembly was then further amplified by PCR to produce a synthetic gene which has been cloned and successfully expressed in both Pichia pastoris and recombinant baculovirus-infected High Five(TM) cells. We believe this strategy to be of special interest as it is simple, accessible and has no limitation with respect to the size of the gene to be synthesized. Used as a systematic approach for the malarial genome or any other A + T-rich organism, the method allows the rapid synthesis of a nucleotide sequence optimized for expression in the system of choice and production of sufficiently large amounts of biological material for complete molecular and structural characterization.  相似文献   

11.
Yeramian E 《Gene》2000,255(2):151-168
A gene identification procedure is formulated, based on large-scale structural analyses of genomic sequences. The structural property is the physical - thermal - stability of the DNA double-helix, as described by the classical helix-coil model. The analyses are detailed for the Plasmodium falciparum genome, which represents one of the most difficult cases for the gene identification problem (notably because of the extreme AT-richness of the genome). In this genome, the coding domains (either uninterrupted genes or exons in split genes) are accurately identified as regions of high thermal stability. The conclusion is based on the study of the available cloned genes, of which 17 examples are described in detail. These examples demonstrate that the physical criterion is valid for the detection of coding regions whose lengths extend from a few base pairs up to several thousand base pairs. Accordingly, the structural analyses can provide a powerful and convenient tool for the identification of complex genes in the P. falciparum genome. The limits of such a scheme are discussed. The gene identification procedure is applied to the completely sequenced chromosomes (2 and 3), and the results are compared with the database annotations. The structural analyses suggest more or less extensive revision to the annotations, and also allow new putative genes to be identified in the chromosome sequences. Several examples of such new genes are described in detail.  相似文献   

12.
13.
14.
R F Howard  F Ardeshir  R T Reese 《Gene》1986,46(2-3):197-205
Complementary DNA (cDNA) clones for GP185, a major antigenically diverse glycoprotein of Plasmodium falciparum, were isolated from a cDNA library of the Honduras I/CDC (Honduras I) isolate, and 1052 bp were sequenced. The expression of cDNA fragments in Escherichia coli using the vector pCQV2 allowed verification of the reading frame. This GP185 cDNA sequence, like the cDNA sequence for a homologous gene of the K1 isolate [Hall et al., Nature 311 (1984) 379-382], codes for a polypeptide which is truncated due to multiple, in-frame stop codons. This polypeptide corresponds to the N-terminal 15% of the proposed coding region of the GP185 gene [Holder et al., Nature 317 (1985) 270-273]. Comparison of the nucleotide sequences for the GP185 gene of Honduras I and five other isolates indicated that there are two areas of conserved DNA sequence, one of 310 bp (beginning 181 bp upstream from the proposed initiation codon) and the other of greater than or equal to 360 bp (located entirely within the coding region), separated by a region encoding isolate-specific tandem amino acid repeats. Rat antiserum was raised to a fusion protein derived from the conserved regions and the intervening repeat region of this Honduras I protein. This antiserum bound GP185 on immunoblots of the homologous Honduras I isolate and the heterologous K1 isolate, which has different tandem repeats. Serum from owl monkeys and humans previously infected with P. falciparum reacted with the fusion protein on immunoblots demonstrating that determinants in the N-terminal 15% of GP185 were immunogenic in infected individuals and suggesting that some of these sites are conserved among isolates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Illegitimate recombination is the prevailing molecular mechanism for the integration of recombinant DNA into the genome of most eukaryotic systems and the generation of deletions by intrachromosomal recombination. We developed a ?selectable marker system to screen for intrachromosomal illegitimate recombination events in order to assess the sequence and structure-specific requirements for illegitimate recombination in tobacco. In 12 illegitimate recombination products analysed, we found that all deletion termini localise to sites of palindromic structures or to A+T-rich DNA elements. All deletion termini showed microhomologies of two to six nucleotides. In three plants, the recombination products contained filler-DNA or an inversion of an endogenous segment. Our data strongly suggest that illegitimate recombination in plants is mediated by a DNA synthesis-dependent process, and that this mechanism is promoted by DNA regions that can form palindromic structures or facilitate DNA unwinding.  相似文献   

16.
A family of cation ATPase-like molecules from Plasmodium falciparum   总被引:1,自引:0,他引:1       下载免费PDF全文
We report the nucleotide and derived amino acid sequence of the ATPase 1 gene from Plasmodium falciparum. The amino acid sequence shares homology with the family of "P"-type cation translocating ATPases in conserved regions important for nucleotide binding, conformational change, or phosphorylation. The gene, which is present on chromosome 5, has a product longer than any other reported for a P-type ATPase. Interstrain analysis from 12 parasite isolates by the polymerase chain reaction reveals that a 330-bp nucleotide sequence encoding three cytoplasmic regions conserved in cation ATPases (regions a-c) is of constant length. By contrast, another 360-bp sequence which is one of four regions we refer to as "inserts" contains arrays of tandem repeats which show length variation between different parasite isolates. Polymorphism results from differences in the number and types of repeat motif contained in this insert. Inserts are divergent in sequence from other P-type ATPases and share features in common with many malarial antigens. Studies using RNA from the erythrocytic stages of the malarial life cycle suggest that ATPase 1 (including the sequence which encodes tandem repeats) is expressed at the large ring stage of development. Immunolocalization has identified ATPase 1 to be in the region of the parasite plasma membrane and pigment body. These findings suggest a possible model for the genesis of malarial antigens.  相似文献   

17.
Comparative genomic analysis of the malaria causative agent, Plasmodium falciparum, with other eukaryotes for which the complete genome is available, revealed that the genome from P. falciparum was more similar to the genome of a plant, Arabidopsis thaliana, than to other non-apicomplexan taxa. Plant-like sequences are thought to result from horizontal gene transfers after a secondary endosymbiosis involving an algal ancestor. The use of the A. thaliana genome and proteome as a reference gives an opportunity to refine our understanding of the extreme compositional bias in the P. falciparum genome that leads to a proteome-wide amino acid bias. A set of pairs of non-redundant protein homologues was selected owing to rigorous genome-wide sequence comparison methods. The introduction of A. thaliana as a reference was a mean to weight the magnitude of the protein evolutionary divergence in P. falciparum. The correlation of the amino acid proportions with evolutionary time supports the hypothesis that amino acids encoded by GC-rich codons are directionally substituted into amino acids encoded by AT-rich codons in the P. falciparum proteome. The long-term deviation of codons in malarial sequences appears as a possible consequence of a genome-wide tri-nucleotidic signature imprinting. Additionally, this study suggests possible working guidelines to improve the accuracy of P. falciparum sequence comparisons, for homology searches and phylogenetic studies.  相似文献   

18.
Estimating genetic diversity and inferring the evolutionary history of Plasmodium falciparum could be helpful in understanding origin and spread of virulent and drug‐resistant forms of the malaria pathogen and therefore contribute to malaria control programme. Genetic diversity of the whole mitochondrial (mt) genome of P. falciparum sampled across the major distribution ranges had been reported, but no Indian P. falciparum isolate had been analysed so far, even though India is highly endemic to P. falciparum malaria. We have sequenced the whole mt genome of 44 Indian field isolates and utilized published data set of 96 genome sequences to present global genetic diversity and to revisit the evolutionary history of P. falciparum. Indian P. falciparum presents high genetic diversity with several characteristics of ancestral populations and shares many of the genetic features with African and to some extent Papua New Guinean (PNG) isolates. Similar to African isolates, Indian P. falciparum populations have maintained high effective population size and undergone rapid expansion in the past with oldest time to the most recent common ancestor (TMRCA). Interestingly, one of the four single nucleotide polymorphisms (SNPs) that differentiates P. falciparum from P. falciparum‐like isolates (infecting non‐human primates in Africa) was found to be segregating in five Indian P. falciparum isolates. This SNP was in tight linkage with other two novel SNPs that were found exclusively in these five Indian isolates. The results on the mt genome sequence analyses of Indian isolates on the whole add to the current understanding on the evolutionary history of P. falciparum.  相似文献   

19.
20.
ABSTRACT. Using fluorogenic substrates and polyacrylamide gels we detected in cell-free extracts of Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei only a single aminopeptidase. A comparative study of the aminopeptidase activity in each extract revealed that the enzymes have similar specificities and kinetics, a near-neutral pH optima of 7.2 and are moderately thermophilic. Each has an apparent molecular weight of 80,000 ± 10,000, determined by high performance liquid chromatography on a calibrated SW500 column. Whilst the P. c. chabaudi and P. berghei activity co-migrate in native polyacrylamide gels, that of P. falciparum migrates more slowly. The three enzymes can be selectively inhibited by ortho -phenanthroline and are thus metallo-aminopeptidases; however, in contrast to other aminopeptidases the metal co-factor does not appear to be Zn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号