首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Sexual selection can affect the prevalence and intensity of infection of individuals by ectoparasitic mites. According to this theory, males should exhibit greater infection by parasites than females and juveniles should be less infected than adults. In the wild, I investigated whether prevalence and intensity of the chyzeriid mite, Nothotrombicula deinacridae (Dumbleton) differed between the sexes and between developmental stages in Wellington tree weta, Hemideina crassidens. Despite being under strong sexual selection, male tree weta did not exhibit greater parasitism and there was some evidence that adults and juveniles differed in prevalence. The sexual selection hypothesis was not supported in this study.  相似文献   

2.
Reproductive activities are generally costly to immune responsiveness because limited resources required by reproduction are diverted away from immunity (and vice versa). Reproduction, however, is not expected to affect the immune response in males and females similarly as mating is expected to negatively affect male immunity more so than female immunity. Here, I test the phenotypic plasticity hypothesis in the Wellington tree weta (Hemideina crassidens), a sexually dimorphic orthopteran insect that is endemic to New Zealand. My laboratory experiment showed that although males had higher rates of melanotic encapsulation than females, contrary to prediction, females were the only sex significantly affected by mating and the effect was positive. In addition to immunity differing between the sexes, immune function can differ intrasexually, particularly when males are polymorphic and different investment strategies are used to maximize fitness. Male H. crassidens exhibit alternative mating strategies that are represented by three different morphotypes. I therefore explored whether the morphs differed in their melanotic encapsulation response and whether mating affected the morphs differently. I found no difference among morphs or an effect of mating on male immune response.  相似文献   

3.
Abstract Adult males are often less immunocompetent than females. One explanation for this is that intense sexual selection causes males to trade‐off investment in immunity with traits that increase mating success. This hypothesis is tested in the Wellington tree weta (Hemideina crassidens), a large, sexually dimorphic orthopteran insect in which males possess enormous mandibular weaponry used during fights for access to female mates. Field‐collected males have a significantly greater immune response (greater melanotic encapsulation) than females, suggesting that body condition, longevity or an allied trait is important to male fitness, or that females require materials for egg production that would otherwise be used to boost immunity. Although immunity is expected to trade‐off against reproductive traits in both sexes, there is no significant relationship between immune response and weapon or testes size in males, nor fecundity in females.  相似文献   

4.
Kelly  Clint D. 《Behavioral ecology》2005,16(1):145-152
Both male and female Wellington tree weta, Hemideina crassidens,use cavities in trees as diurnal shelters. That these galleriesare often limiting in nature offers males the opportunity toincrease their reproductive success by monopolizing galleriesand the females residing in them. Male H. crassidens, can matureat either the 8th, 9th, or 10th instar, whereas females matureat the 10th instar only, and male head (and mandible) size positivelycovaries with ultimate instar number. It has been suggestedthat males fight for control of galleries by using their enlargedmandibles as weapons, and males with larger mandibles controlgalleries with more females. In the present study, I presenta statistical examination of sexual dimorphism, showing thattraits related to head size are on average significantly largerin males, whereas traits related to body size are on averagesignificantly larger in females. I tested three predictionsaddressing the hypothesis that sexual selection is driving megacephalyin male H. crassidens. First, as predicted, traits related tohead size show a positive allometric relationship with bodysize in males but not in females. Second, adapting a novel statisticaltechnique based on maximum likelihood and bootstrapping revealedthat males, but not females, exhibit a multimodal distributionin head and body size traits. This is likely a consequence ofmales maturing at one of three instars, which results in positivecovariance between the ultimate instar number and morphologicaltraits. Third, as predicted, single adult males with largerheads reside in galleries housing larger groups of adult females.  相似文献   

5.
Fitness‐related traits, such as immunity and reproduction, are typically condition dependent, and are predicted to trade off against each other because they share a pool of energy and resources. It is generally assumed that the resources and energy required for immune processes and reproduction is contained in the body fat; however, few studies quantify the effect of an immune insult on fat load. I tested the hypothesis that if mounting an immune response is physiologically costly in terms of consuming limited resources from body fat, and reproduction also relies on these resources, then an immune challenge should cause a reduction in fat load and an associated decline in reproduction. I tested this hypothesis by assaying the fat content of female Wellington tree weta (Hemideina crassidens) after repeated challenges with lipopolysaccharide (LPS), and counting the number of oviposited eggs in addition to assaying the egg protein content, a possible measure of egg quality. In line with my prediction, immune‐challenged females had significantly smaller fat loads and laid significantly fewer eggs than saline‐injected controls. Moreover, the protein content of the eggs laid by immune‐challenged females was significantly lower than that of controls. My experimental results show that an immune challenge with a non‐pathogenic stimulant increases fat consumption, which in turn limits the resources available for reproduction. These findings support the hypothesis that reproduction and immunity are condition dependent, and are traded off against each other. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 38–46.  相似文献   

6.
The propagation of vibrations along the trunk and branches of a manuka tree, generated in response to the impact of a steel ball-bearing on the trunk, was measured with an accelerometer. The impact generated bending waves which travelled along the trunk and into the branches. Close to the point of impact the waveform was dominated by a damped oscillation at 518 Hz; as the bending wave progressed away from the point of impact the frequency of the dominant waveform increased. Beyond 200 cm the waveform became increasingly complex and a smallamplitude, high-frequency component progressively preceded the main wave. Branching points also induced complex waveforms, particularly where branches lay at a large angle to the trunk. Stridulating wetas also generated bending waves in the tree at a frequency close to that generated by the ball-bearing, as well as at a higher frequency of 7.5 kHz. The acoustic frequency of stridulation peaked at 0.8 and 3.4 kHz. Records from nerves serving the vibration-sensitive subgenual organs showed that wetas can detect oscillations at 1 kHz at 0.015ms-2. A stridulating weta placed on the same log as a preparation in which the nerve from the subgenual organ was monitored generated oscillatins well above the threshold for detection.  相似文献   

7.
Summary This study of the ultrastructure of the auditory sensilla of the New Zealand weta, Hemideina crassidens, is the first such study on a member of the orthopteran Superfamily Gryllacridoidea. Ultrastructure of the auditory sensilla is similar in all of the tibial mechanosensory organs, here called subgenual organ, intermediate organ and crista acoustica by analogy with comparable structures in Tettigoniidae.Distal to each sensory soma is a dendrite containing multiple ciliary rootlets that fuse into a single ciliary root. This splits into nine root processes that pass around the outside of the proximal basal body and then rejoin at the level of the distal basal body, distal to which the dendrite has a modified ciliary structure with a circlet of nine peripheral paired tubes and rods as it passes through the proximal extracellular space. It is then enclosed by a zone of scolopale cell cytoplasm before expanding into a dilatation within the distal extracellular space. In some sensilla this space is partially occluded by electron dense material which is part of the scolopale cell. Distal to the dilatation the cilium shrinks and ends surrounded by the scolopale cap.Accessory cells consist of glia enwrapping the sensory neuron in the region of its soma, the scolopale cell surrounding the ciliary portion of the dendrite, and the attachment cell surrounding the scolopale cell and scolopale cap and connected to them by desmosomes. The attachment cells are filled with microtubules in differing densities and orientations. Lamellae are present in the acellular matrix surrounding the attachment cells. Banded fibres, presumably of collagen, are also present in the matrix.  相似文献   

8.
L. H. Field    F. C. Rind 《Journal of Zoology》1992,228(3):371-394
Using a femoral-abdominal stridulatory mechanism, wetas produce the following stridulatory behaviours: aggression, mating, calling, defence and disturbance. Syllable period, rather than number of syllables/echeme or syllable duration, was the most stereotyped temporal parameter for aggression, mating and calling stridulation. Coefficients of variation of the above parameters were large and overlapped considerably for aggression and mating stridulation. We concluded that, for these two behaviours, a basic sound pattern is used to convey different messages to female and male receiver wetas, respectively, but the syllable period of the pattern decreases with increased excitation of males in aggressive encounters. In adult male combat, winners stridulated last in a bout, and produced significantly more aggression sounds than losers.  相似文献   

9.
10.
Positive size assortative mating can arise if either one or both sexes prefer bigger mates or if the success of larger males in contests for larger females leaves smaller males to mate with smaller females. Moreover, body size could not only influence pairing patterns before copulation but also the covariance between female size and size of ejaculate (number of spermatophores) transferred to a mate. In this field study, we examine the pre-copulatory mate choice, as well as insemination, patterns in the Cook Strait giant weta (Deinacrida rugosa). D. rugosa is a large orthopteran insect that exhibits strong female-biased sexual dimorphism, with females being nearly twice as heavy as males. Contrary to the general expectation of male preference for large females in insects with female-biased size dimorphism, we found only weak support for positive size assortative mating based on size (tibia length). Interestingly, although there was no correlation between male body size and the number of spermatophores transferred, we did find that males pass more spermatophores to lighter females. This pattern of sperm transfer does not appear to be a consequence of those males that mate heavier females being sperm depleted. Instead, males may provide lighter females with more spermatophores perhaps because these females pose less of a sperm competition risk to mates.  相似文献   

11.
Abstract Tension zones are maintained by the interaction between selection against hybrids and dispersal of individuals. Investigating multiple hybrid zones within a single species provides the opportunity to examine differences in zone structure on a background of differences in extrinsic factors (e.g., age of the zone, ecology) or intrinsic factors (e.g., chromosomes). The New Zealand tree weta Hemideina thoracica comprises at least eight distinct chromosomal races with diploid numbers ranging from 2n = 11 (XO) to 2n = 23 (XO). Five independent hybrid zones were located that involve races differing from one another by a variety of chromosomal rearrangements. The predicted negative correlation between extent of karyotypic differentiation (measured in terms of both percent of genome and number of rearrangements) and zone width was not found. Conversely, the widest zones were those characterized by two chromosome rearrangements involving up to 35% of the genome. The narrowest zone occurred where the two races differ by a single chromosome rearrangement involving approximately 2% of the genome. The five estimates of chromosomal cline width ranged from 0.5 km to 47 km. A comparative investigation of cline width for both chromosomal and mitochondrial markers revealed a complex pattern of zone characteristics. Three of the five zones in this study showed cline concordance for the nuclear and cytoplasmic markers, and at two of the zones the clines were also coincident. Zones with the widest chromosomal clines had the widest mitochondrial DNA clines. It appears that, even within a single species, the extent of karyotypic differentiation between pairs of races is not a good predictor of the level of disadvantage suffered by hybrids.  相似文献   

12.
Aim New Zealand broke away from the margins of Gondwana c. 75 Ma. Since then, New Zealand taxa derived from the Gondwanan biota are thought to have been exposed first to a subtropical climate on a low lying terrain, then severe land reduction during the Oligocene marine transgression, followed by much cooler climates of the Pliocene and Pleistocene, at which time mountain ranges emerged. The biological consequence of New Zealand's geological and climatic history is not well understood, in particular the extent to which the Oligocene acted as a biological bottleneck remains unresolved. Methods We used mitochondrial cytochrome oxidase I and 12S DNA sequences to examine the extent of diversity and inferred timing of speciation of New Zealand weta (Anostostomatidae), a group of Orthoptera with a Gondwanan distribution generally thought to be ancient inhabitants of New Zealand. Main conclusions We hypothesize that at least three distinct groups of weta survived the Oligocene marine transgression and radiated subsequently. Speciation followed during the Miocene and radiation into new habitats occurred during the Pliocene when mountain building created novel environments. Patterns of genetic diversity within species reflect, in some instances, geographical subdivision in the Pliocene, and in other cases, Pleistocene range changes resulting from climate change.  相似文献   

13.
Sclerotized cuticle segments from the thorax, dorsal abdomen, and ventral abdomen of the alpine, weta Hemideina maori (Saussure) (Orthoptera: Stenopelmatidae) were examined by light microscopy and by scanning and transmission electron microscopy. An epicuticle, exocuticle (outer and inner), mesocuticle, endocuticle, and deposition layer are present in transverse sections. The epicuticle is further composed of a cuticulin layer and inner epicuticle, the latter being finely laminated and containing narrow wax canals that terminate below the cuticle surface. Openings to dermal gland ducts are visible on the surface as are large setae and smaller sensory pegs. Frozen fractured cuticle reveals the presence of horizontal ducts or channels that run laterally within the cuticle. The structure of weta cuticle is compared with that of the common house cricket and arthropods in general.  相似文献   

14.
New Zealand taxa from the Orthopteran family Anostostomatidae have been shown to consist of three broad groups, Hemiandrus (ground weta), Anisoura/Motuweta (tusked weta) and Hemideina-Deinacrida (tree-giant weta). The family is also present in Australia and New Caledonia, the nearest large land masses to New Zealand. All genera are endemic to their respective countries except Hemiandrus that occurs in New Zealand and Australia. We used nuclear and mitochondrial DNA sequence data to study within genera and among species-level genetic diversity within New Zealand and to examine phylogenetic relationships of taxa in Australasia. We found the Anostostomatidae to be monophyletic within Ensifera, and justifiably distinguished from the Stenopelmatidae among which they were formerly placed. However, the New Zealand Anostostomatidae are not monophyletic with respect to Australian and New Caledonian species in our analyses. Two of the New Zealand groups have closer allies in Australia and one in New Caledonia. We carried out maximum-likelihood and Bayesian analyses to reveal several well supported subgroupings. Our analysis included the most extensive sampling to date of Hemiandrus species and indicate that Australian and New Zealand Hemiandrus are not monophyletic. We used molecular dating approaches to test the plausibility of alternative biogeographic hypotheses for the origin of the New Zealand anostostomatid fauna and found support for divergence of the main clades at, or shortly after, Gondwanan break-up, and dispersal across the Tasman much more recently.  相似文献   

15.
Populations of the same species inhabiting distinct localities experience different ecological and climatic pressures that might result in differentiation in traits, particularly those related to temperature. We compared metabolic rate (and its thermal sensitivity), growth rate, and body size among nine high- and low-elevation populations of the Wellington tree weta, Hemideina crassidens, distributed from 9 to 1171 m a.s.l across New Zealand. Our results did not indicate elevational compensation in metabolic rates (metabolic cold adaptation). Cold acclimation decreased metabolic rate compared to warm-acclimated individuals from both high- and low-elevation populations. However, we did find countergradient variation in growth rates, with individuals from high-elevation populations growing faster and to a larger final size than individuals from low-elevation populations. Females grew faster to a larger size than males, although as adults their metabolic rates did not differ significantly. The combined physiological and morphological data suggest that high-elevation individuals grow quickly and achieve larger size while maintaining metabolic rates at levels not significantly different from low-elevation individuals. Thus, morphological differentiation among tree weta populations, in concert with genetic variation, might provide the material required for adaptation to changing conditions.  相似文献   

16.
Nine karyotypes are described within a single species of common New Zealand tree weta. Their diploid numbers range from 11 to 25. The distribution of the karyotypes suggests that each had a single origin except the 17-karyotype which was the most common karyotype and had a disjunct distribution. The overall level of allozyme diversity observed is similar to that seen within many widespread taxa. The distribution of allozyme alleles did not coincide with the distribution of karyotypes within this species and the Neighbour-Joining tree was not concordant with the chromosome based sub-divisions of the species. Thus, no evidence was found to suggest that chromosomal differentiation has been acting as a barrier to the flow of alleles within H. thoracica. The lack of concordance of genetic markers is thought to result from rapid chromosome radiation and reticulate evolution. Northland peninsula of North Island, New Zealand is a region of high chromosomal and allozymic diversity in H. thoracica. This may have resulted from geographic isolation during the Pliocene when Northland formed an archipelago of many small low-lying islands.  相似文献   

17.
Establishing new populations by transferring founder individuals from source populations has been effective for managing the recovery of many threatened species including some weta (Orthoptera: Anostostomatidae) in New Zealand. These large-bodied flightless insects are ‘flagship species’ for insect conservation in New Zealand and many are rare or threatened. The declining abundance of most weta species, particularly giant weta, can be attributed to the introduction of mammalian predators, habitat destruction, and habitat modification by introduced mammalian browsers. New populations of some weta have been established in locations, particularly on islands, where these threats have been eliminated or severely reduced in order to reduce the risk of extinction. Some populations were established to provide food for endemic vertebrates, ecosystem restoration and ready access for the general public. We illustrate how methods for both transferring weta and monitoring them have become more sophisticated by using a series of case studies. Other transfers of weta not included in the case studies are also summarised. We conclude by re-iterating the importance of documenting the transfer and post-release monitoring for all insect transfers, both for biogeographical reasons and to provide information to improve future transfers.  相似文献   

18.
The New Zealand weta, Hemideina thoracica, is a nocturnal orthopteran insect which emerges from holes in trees or from under bark soon after sunset to forage for several hours on plant and animal material before returning to its refuge before dawn. In tests of the internal clock hypothesis it exhibits clear circadian locomotor rhythms in which the period is initially somewhat less than 24 h, but frequently spontaneously increases to over 25 h. The rhythms are entrainable by light and temperature cycles, obey Aschoff's Law and are temperature compensated. A single oscillator feedback model accounts for these basic properties of the weta clock, but does not explain a variety of examples of rhythm lability, such as day skipping, spontaneous change in period, scalloping and desynchrony typically found in the real data. To account for these characteristics the model is expanded into two linked populations of oscillators, which retain the basic properties of the simple model and in addition interact through their coupling to show the various types of free-run lability. To make these control systems models compatible with the molecular interpretation of circadian biology, each of the components in the feedback loop is matched with molecular function and structure.  相似文献   

19.
Calorimetric analysis indicates that 82% of the body water of Hemideina maori is converted into ice at 10 degrees C. This is a high proportion and led us to investigate whether intracellular freezing occurs in H. maori tissue. Malpighian tubules and fat bodies were frozen in haemolymph on a microscope cold stage. No fat body cells, and 2% of Malpighian tubule cells froze during cooling to -8 degrees C. Unfrozen cells appeared shrunken after ice formed in the extracellular medium. There was no difference between the survival of control tissues and those frozen to -8 degrees C. At temperatures below -15 degrees C (lethal temperatures for weta), there was a decline in survival, which was strongly correlated with temperature, but no change in the appearance of tissue. It is concluded that intracellular freezing is avoided by Hemideina maori through osmotic dehydration and freeze concentration effects, but the reasons for low temperature mortality remain unclear. The freezing process in H. maori appears to rely on extracellular ice nucleation, possibly with the aid of an ice nucleating protein, to osmotically dehydrate the cells and avoid intracellular freezing. The lower lethal temperature of H. maori (-10 degrees C) is high compared to organisms that survive intracellular freezing. This suggests that the category of 'freezing tolerance' is an oversimplification, and that it may encompass at least two strategies: intracellular freezing tolerance and avoidance.  相似文献   

20.
Wetas are ancient Gondwanan orthopterans (Anostostomatidae) with many species endemic to New Zealand. Like all Orthoptera they possess efferent neuromodulatory dorsal unpaired median (DUM) neurons, with bilaterally symmetrical axons, that are important components of motor networks. These neurons produce overshooting action potentials and are easily stimulated by a variety of external mechanosensory stimuli delivered to the body and appendages. In particular, stimulation of the antennae, mouth parts, tarsi and femora of the legs, abdomen, cerci and ovipositor is very effective in activating DUM neurons in the metathoracic ganglion of wetas. In addition, looming visual stimuli or light on-, light off-stimuli excite many metathoracic DUM neurons. These DUM sensory reflex pathways remain viable after the prothoracic to subesophageal connective is cut, whereas in locusts such reflex pathways are interrupted by the ablation. This suggests that, in wetas, sensory reflex pathways for DUM activation are organized in a less centralized fashion than in locusts, and may therefore reflect a plesiomorphic evolutionary state in the weta. In addition, many weta DUM neurons exhibit slow rhythmic bursting which also persists following the connective ablation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号