首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemia-reperfusion injury in the heart results in enhanced production of H2O2 and activation of AMP-activated protein kinase (AMPK). Since mutations in AMPK result in cardiovascular dysfunction, we investigated whether the activation of AMPK mediates the H2O2-induced reduction in cardiac mechanical function. Isolated working rat hearts were perfused at 37 degrees C with Krebs-Henseleit solution. Following a 20-minute equilibration period, a single bolus of H2O2 (300 micromol/L) was added and the hearts were perfused for an additional 5 min. H2O2 induced a dramatic and progressive reduction in cardiac function. This was accompanied by rapid and significant activation of AMPK, an increase in Thr-172 phosphorylation of AMPK, and an increase in the creatine to phosphocreatine (Cr/PCr) ratio. Addition of pyruvate (5 mmol/L) to the perfusate prevented the H2O2-mediated reduction in cardiac mechanical dysfunction, activation of myocardial AMPK activity, increase in AMPK phosphorylation and the increase in the Cr/PCr ratio. Hearts challenged with H2O2 (300 micromol/L) in presence of either AMPK inhibitor Compound C (10 micromol/L) or its vehicle (dimethyl sulfoxide (DMSO), 0.1%) showed reduced impairment in cardiac mechanical function. Compound C but not its vehicle significantly inhibited myocardial AMPK activity. Thus, H2O2 induces cardiac dysfunction via both AMPK-dependent and independent mechanisms.  相似文献   

2.
Enhanced cardiac generation of peroxynitrite contributes to septic cardiomyopathy. Since matrix metalloproteinases (MMPs) are activated in vitro by peroxynitrite, we hypothezised that MMPs may contribute to cardiac mechanical dysfunction in sepsis. Rats were injected (i.p.) with either lipopolysaccharide (LPS, 4mg/kg) or vehicle. MMP inhibitors, either Ro 31-9790 (20 mg/kg), doxycycline (4mg/kg), or vehicle were administered i.p. 30 min after LPS. At 6 h, when the symptoms of endotoxemia peak, hearts were excised and perfused as working hearts with Krebs-Henseleit buffer at 37°C. Cardiac work (cardiac output x peak systolic pressure product) was measured. Perfusate and ventricle samples were analyzed by gelatin zymography to quantify MMP activity.Cardiac function was significantly depressed in LPS-treated rats compared to control rats (control: 55 ± 4, LPS: 26 ± 6 mmHg*mL*min–1). LPS also caused a loss of 72 kDa MMP-2 activity in the ventricles and the perfusate. Although MMP-9 activity was not detected in the ventricles, LPS resulted in an increase in perfusate 92 kDa MMP-9 activity. The MMP inhibitors significantly improved cardiac function of LPS-treated rats (Ro31-9790: 38 ± 3, doxycycline: 51 ± 3 mmHg*mL*min–1), had no effect on the loss of MMP-2 activity, and significantly reduced the MMP-9 activity in the perfusate. These results demonstrate, for the first time, that LPS induced cardiac dysfunction is associated with a loss in ventricular MMP-2 activity and the release of MMP-9 from the heart. MMP inhibitors can significantly preserve cardiac mechanical function during septic shock.  相似文献   

3.
Matrix metalloproteinases (MMPs) are central to the development and progression of dysfunctional ventricular remodeling after tissue injury. We studied 6 month old heterozygous mice with cardiac-specific transgenic expression of active MMP-2 (MMP-2 Tg). MMP-2 Tg hearts showed no substantial gross alteration of cardiac phenotype compared to age-matched wild-type littermates. However, buffer perfused MMP-2 Tg hearts subjected to 30 min of global ischemia followed by 30 min of reperfusion had a larger infarct size and greater depression in contractile performance compared to wild-type hearts. Importantly, cardioprotection mediated by ischemic preconditioning (IPC) was completely abolished in MMP-2 Tg hearts, as shown by abnormalities in mitochondrial ultrastructure and impaired respiration, increased lipid peroxidation, cell necrosis and persistently reduced recovery of contractile performance during post-ischemic reperfusion. We conclude that MMP-2 functions not only as a proteolytic enzyme but also as a previously unrecognized active negative regulator of mitochondrial function during superimposed oxidative stress.  相似文献   

4.
We tested whether the activation of proteolytic enzymes, calpain, and matrix metalloproteinases (MMPs) during ischemia-reperfusion (I/R) is mediated through oxidative stress. For this purpose, isolated rat hearts were subjected to a 30?min global ischemia followed by a 30?min reperfusion. Cardiac function was monitored and the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, calpain, and MMP were measured. Depression of cardiac function and Na(+)/K(+)-ATPase activity in I/R hearts was associated with increased calpain and MMP activities. These alterations owing to I/R were similar to those observed in hearts perfused with hypoxic medium, H(2)O(2) and xanthine plus xanthine oxidase. The I/R-induced changes were attenuated by ischemic preconditioning as well as by perfusing the hearts with N-acetylcysteine or mercaptopropionylglycine. Inhibition of MMP activity in hearts treated with doxycycline depressed the I/R-induced changes in cardiac function and Na(+)/K(+)-ATPase activity without affecting the calpain activation. On the other hand, inhibition of calpain activity upon treatment with leupeptin or MDL 28170 significantly reduced the MMP activity in addition to attenuating the I/R-induced alterations in cardiac function and Na(+)/K(+)-ATPase activity. These results suggest that the I/R-induced depression in Na(+)/K(+)-ATPase and cardiac function may be a consequence of the increased activities of both calpain and MMP because of oxidative stress in the heart.  相似文献   

5.
To study the mechanisms of mitochondrial dysfunction due to ischemia-reperfusion (I/R) injury, rat hearts were subjected to 20 or 30 min of global ischemia followed by 30 min of reperfusion. After recording both left ventricular developed pressure (LVDP) and end-diastolic pressure (LVEDP) to monitor the status of cardiac performance, mitochondria from these hearts were isolated to determine respiratory and oxidative phosphorylation activities. Although hearts subjected to 20 min of ischemia failed to generate LVDP and showed a marked increase in LVEDP, no changes in mitochondrial respiration and phosphorylation were observed. Reperfusion of 20-min ischemic hearts depressed mitochondrial function significantly but recovered LVDP completely and lowered the elevated LVEDP. On the other hand, depressed LVDP and elevated LVEDP in 30-min ischemic hearts were associated with depressions in both mitochondrial respiration and oxidative phosphorylation. Reperfusion of 30-min ischemic hearts elevated LVEDP, attenuated LVDP, and decreased mitochondrial state 3 and uncoupled respiration, respiratory control index, ADP-to-O ratio, as well as oxidative phosphorylation rate. Alterations of cardiac performance and mitochondrial function in I/R hearts were attenuated or prevented by pretreatment with oxyradical scavenging mixture (superoxide dismutase and catalase) or antioxidants [N-acetyl-L-cysteine or N-(2-mercaptopropionyl)-glycine]. Furthermore, alterations in cardiac performance and mitochondrial function due to I/R were simulated by an oxyradical-generating system (xanthine plus xanthine oxidase) and an oxidant (H(2)O(2)) either upon perfusing the heart or upon incubation with mitochondria. These results support the view that oxidative stress plays an important role in inducing changes in cardiac performance and mitochondrial function due to I/R.  相似文献   

6.
Systemic inflammation is a key mediator of left ventricular dysfunction (LV) in prediabetes via the activation of myeloid differentiation factor 2 (MD2)/toll-like receptor 4 complex. The MD2 inhibitor L6H21 effectively reduced systemic and cardiac inflammation in obese mice. However, its effects on cardiac function and regulated cell death pathways in the heart in prediabetes are still unknown. The prediabetic rats were divided into 3 subgroups to receive vehicle, L6H21 (10, 20, 40 mg/kg) or metformin (300 mg/kg) for 1, 2 and 4 weeks. Then, metabolic parameters, cardiac sympathovagal balance, LV function, cardiac mitochondrial function, oxidative stress, inflammation, apoptosis, necroptosis, and ferroptosis were determined. All prediabetic rats exhibited cardiac sympathovagal imbalance, LV dysfunction, and cardiac mitochondrial dysfunction. All doses of L6H21 treatment for 2- and 4-weeks attenuated insulin resistance. L6H21 at 40 mg/kg attenuated cardiac autonomic imbalance and LV dysfunction after 1 week of treatment. Both 10 and 20 mg/kg of L6H21 required longer treatment duration to show these benefits. Mechanistically, all doses of L6H21 reduced cardiac mitochondrial dysfunction after 1 week of treatment, resulting in alleviated oxidative stress and inflammation. L6H21 also effectively suppressed cardiac apoptosis and ferroptosis, but it did not affect necroptosis in prediabetic rats. L6H21 provided the cardioprotective efficacy in dose- and time-dependent manners in prediabetic rats via reduction in apoptosis and ferroptosis.  相似文献   

7.
Despite the general understanding that ischemia-reperfusion (I/R) promotes oxidant stress, specific contributions of oxidant stress or damage to myocardial I/R injury remain poorly defined. Moreover, whether endogenous ‘cardioprotectants’ such as adenosine act via limiting this oxidant injury is unclear. Herein we characterized effects of 20 min ischemia and 45 min reperfusion on cardiovascular function, oxidative stress and damage in isolated perfused mouse hearts (with glucose or pyruvate as substrate), and examined whether 10 μM adenosine modified these processes. In glucose-perfused hearts post-ischemic contractile function was markedly impaired (< 50% of pre-ischemia), cell damage assessed by lactate dehydrogenase (LDH) release was increased (12 ± 2 IU/g vs. 0.2 ± 0.1 IU/g in normoxic hearts), endothelial-dependent dilation in response to ADP was impaired while endothelial-independent dilation in response to nitroprusside was unaltered. Myocardial oxidative stress increased significantly, based on decreased glutathione redox status ([GSSG]/[GSG + GSSH] = 7.8 ± 0.3% vs. 1.3 ± 0.1% in normoxic hearts). Tissue cholesterol, native cholesteryl esters (CE) and the lipid-soluble antioxidant α-tocopherol (α-TOH, the most biologically active form of vitamin E) were unaffected by I/R, whereas markers of primary lipid peroxidation (CE-derived lipid hydroperoxides and hydroxides; CE-O(O)H) increased significantly (14 ± 2 vs. 2 ± 1 pmol/mg in normoxic hearts). Myocardial α -tocopherylquinone (α-TQ; an oxidation product of α -TOH) also increased (10.3 ± 1.0 vs. 1.7 ± 0.2 pmol/mg in normoxic hearts). Adenosine treatment improved functional recovery and vascular function, and limited LDH efflux. These effects were associated with an anti-oxidant effect of adenosine, as judged by inhibition of I/R-mediated changes in glutathione redox status (by 60%), α-TQ (80%) and CE-O(O)H (100%). Provision of 10 mM pyruvate as sole substrate (to by-pass glycolysis) modestly reduced I/R injury and changes in glutathione redox status and α-TQ, but not CE-O(O)H. Adenosine exerted further protection and anti-oxidant actions in these hearts. Functional recoveries and LDH efflux correlated inversely with oxidative stress and α -TQ (but not CE-O(O)H) levels. Collectively, our data reveal selective oxidative events in post-ischemic murine hearts, which are effectively limited by adenosine (independent of substrate). Correlation of post-ischemic cardiovascular outcomes with specific oxidative events (glutathione redox state, α-TQ) supports an important anti-oxidant component to adenosinergic protection.  相似文献   

8.
The present study investigated whether oxidative stress plays a role in ischemia-reperfusion-induced changes in cardiac gene expression of Na(+)-K(+) ATPase isoforms. The levels of mRNA for Na(+)-K(+) ATPase isoforms were assessed in the isolated rat heart subjected to global ischemia (30 min) followed by reperfusion (60 min) in the presence or absence of superoxide dismutase (5 x 10(4)U/L) plus catalase (7.5 x 10(4)U/L), an antioxidant mixture. The levels of mRNA for the alpha(2), alpha(3), and beta(1) isoforms of Na(+)-K(+) ATPase were significantly reduced in the ischemia-reperfusion hearts, unlike the alpha(1) isoform. Pretreatment with superoxide dismutase+catalase preserved the ischemia-reperfusion-induced changes in alpha(2), alpha(3), and beta(1) isoform mRNA levels of the Na(+)-K(+) ATPase, whereas the alpha(1) mRNA levels were unaffected. In order to test if oxidative stress produced effects similar to those seen with ischemia-reperfusion, hearts were perfused with an oxidant, H(2)O(2) (300 microM), or a free radical generator, xanthine (2mM) plus xanthine oxidase (0.03 U/ml) for 20 min. Perfusion of hearts with H(2)O(2) or xanthine/xanthine oxidase depressed the alpha(2), alpha(3), and beta(1) isoform mRNA levels of the Na(+)-K(+) ATPase, but had lesser effects on alpha(1) mRNA levels. These results indicate that Na(+)-K(+) ATPase isoform gene expression is altered differentially in the ischemia-reperfusion hearts and that antioxidant treatment appears to attenuate these changes. It is suggested that alterations in Na(+)-K(+) ATPase isoform gene expression by ischemia-reperfusion may be mediated by oxidative stress.  相似文献   

9.
Hypothermia before and/or during no-flow ischemia promotes cardiac functional recovery and maintains mRNA expression for stress proteins and mitochondrial membrane proteins (MMP) during reperfusion. Adaptation and protection may occur through cold-induced change in anaerobic metabolism. Accordingly, the principal objective of this study was to test the hypothesis that hypothermia preserves myocardial function during hypoxia and reoxygenation. Hypoxic conditions in these experiments were created by reducing O2 concentration in perfusate, thereby maintaining or elevating coronary flow (CF). Isolated Langendorff-perfused rabbit hearts were subjected to perfusate (Po2 = 38 mmHg) with glucose (11.5 mM) and perfusion pressure (90 mmHg). The control (C) group was at 37 degrees C for 30 min before and 45 min during hypoxia, whereas the hypothermia (H) group was at 29.5 degrees C for 30 min before and 45 min during hypoxia. Reoxygenation occurred at 37 degrees C for 45 min for both groups. CF increased during hypoxia. The H group markedly improved functional recovery during reoxygenation, including left ventricular developed pressure (DP), the product of DP and heart rate, dP/dtmax, and O2 consumption (MVo2) (P < 0.05 vs. control). MVo2 decreased during hypothermia. Lactate and CO2 gradients across the coronary bed were the same in C and H groups during hypoxia, implying similar anaerobic metabolic rates. Hypothermia preserved MMP betaF1-ATPase mRNA levels but did not alter adenine nucleotide translocator-1 or heat shock protein-70 mRNA levels. In conclusion, hypothermia preserves cardiac function after hypoxia in the hypoxic high-CF model. Thus hypothermic protection does not occur exclusively through cold-induced alterations in anaerobic metabolism.  相似文献   

10.
Lv PP  Fan Y  Chen WL  Shen YL  Zhu L  Wang LL  Chen YY 《生理学报》2007,59(5):674-680
本文旨在研究冠状动脉内皮和NO在选择性环加氧酶2(cyclooxygenase2,COX-2)抑制剂尼美舒利(nimesulide)对抗心肌氧化损伤中的作用。离体大鼠心脏行Langendorff灌流,给予H2O2(140Bmol/L)观察心脏收缩功能。用U-46619灌流心脏,使冠状动脉预收缩后,观察冠状动脉对内皮依赖性舒张因子5-HT和内皮非依赖性舒张因子硝普钠(sodiumnitroprusside,SNP)的反应。结果显示:(1)与空白对照组(100%)相比,H202灌流20min后,左心室发展压[left ventriculardevelo pedpressure,LVDP,(54.8±4.0)%],和心室内压最大变化速率【±dp/dtmax(50.8±3.1)%和(46.2±2.9)%]明显降低。H2O2灌流前尼美舒利(5μmol/L)预处理10min,能够显著抑制H2O2引起的LVDP和μdp/dtmax下降[(79.9±2.8)%,(80.3±2.6)%和(81.4±2.6)%,P〈0.0l]。(2)与空白对照组相比,H2O2灌流后,5-HT和SNP引起内皮依赖性和内皮非依赖性血管舒张功能均明显下降;而尼美舒利预处理10min能明显对抗内皮依赖性血管舒张功能的下降[(-22.2±4.2)%vsH2O2组(-6.0±2.5)%,P〈0.0l],但对其内皮非依赖性血管舒张功能的下降没有明显作用[(-2.0±1.8)%vsH202组(-7.0±3.5)%,P〉0.05]。(3)一氧化氮合酶(nitric oxide synthase,NOS)抑制剂L-NAME能够部分取消尼美舒利预处理对H20,应激心脏心功能指标的改善作用ILVDP和±dp/dtmax分别为(60.2±2.1)%,(63.9±2.4)%和(63.1±2.9)%,P〈0.01]。同时尼美舒利预处理10min能使H202应激心肌NO含量增加[(2.63±0.40)vs(1.36±0.23)nmol/gprotein,P〈0.051,而L-NAME抑制此作用。(4)选择性COX-1抑制剂吡罗昔康(piroxicam)预处理不能抑制H202引起的LVDP和±dp/dtmax下降,但促进左心室舒张末压(1eftventricular end diastolicpressure,LVEDP)升高;吡罗昔康对H202引起的内皮依赖性和内皮非依赖性血管舒张功能下降无显著作用。以上结果提示,选择性COX-2抑制剂尼美舒利能够对抗大鼠离体心肌氧化应激损伤,其机制可能是通过改善内皮依赖性血管舒张功能和增加心肌NO含量起作用。  相似文献   

11.
Rat hearts were perfused for 15min with buffer equilibrated with 0.01% or 0.05% CO. The buffer was equilibrated with 21% O(2) throughout. The ventricular glutathione content decreased by 76% and 84%, 90min post-exposure to 0.01% and 0.05% CO, respectively, compared with 0% CO controls (0.45+/-0.01 micromol/g wet tissue; +/-SEM, n=3). Both reduced and oxidised glutathione contributed to this decline. When ascorbate and Trolox C were included during exposure to 0.05% CO the glutathione pool was partly protected; here the glutathione decrease was 46%. In most hearts additional creatine kinase activity in the perfusate indicated minor tissue injury occurring immediately after the start and/or about 10min after the end of exposure to 0.01% CO or 0.05% CO. Ventricle lactate levels were unaffected by exposure to 0.01% CO. This evidence supports a role for oxidative stress in CO cardiotoxicity.  相似文献   

12.
13.
Little is known concerning the effect of oxidative stress on the expression of antioxidative enzymes in the decompensated cardiac hypertrophy of spontaneously hypertensive rats (SHR), considered as a model of dilative cardiomyopathy in man. Superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) were characterized in isolated perfused hearts of 18 month old SHR and the age-matched normotensive control Wistar-Kyoto (WKY) rats, before and after 30 min infusion of 25 microM H(2)O(2). After infusion of H(2)O(2), aortic flow decreased in WKY from 26.2 +/- 2.2 to 16.0 +/- 0.8 ml/min (p <.05) but not in SHR (18.2 +/- 1.9 vs. 20.7 +/- 2.2 ml/min). This protection was related to the higher myocardial activities of GPx, MnSOD and CuZnSOD in SHR, compared with those of the WKY group. Although total SOD activity in the SHR fell after H(2)O(2) exposure (to 1.81 +/- 0.13 from 3.56 +/- 0.49 U/mg of protein), catalase activity increased (to 2.46 +/- 0.34 from 1.56 +/- 0.29 k min(-1)mg(-1)protein), compared with the pre-infusion period (p <.05 in each case). In additional studies, hearts were subjected to 30 min of global ischemia followed by 30 min of reperfusion. The results obtained in ischemic/reperfused hearts show the same changes in enzyme activities measured as it was observed in H(2)O(2) perfused hearts, indicating that oxidative stress is independent of the way it was induced. The higher catalase activity derived from elevated mRNA synthesis. The antioxidative system in dilative cardiomyopathic hearts of SHR is induced, probably due to episodes of oxidative stress, during the process of decompensation. This conditioning of the antioxidative potential may help overcome acute stress situations caused by reactive oxygen species in the failing myocardium.  相似文献   

14.
Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10-30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5'-[gamma-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.  相似文献   

15.
In mammalian hearts, local myocardial flow (LMF) varies between 20 and 200% of the mean. It is not clear whether oxidative metabolism has a similar degree of heterogeneity. Therefore, we investigated the relation between LMF and local oxidative metabolism in isolated rabbit hearts. Buffer oxygenation with (18)O(2) resulted in labeled myocardial oxidation water (H(2)(18)O). In four hearts, myocardial oxygen consumption (MVO(2)) was calculated from the H(2)(18)O production and compared with that calculated according to Fick. In eight additional hearts, LMF was measured using microspheres. Coronary venous H(2)(18)O kinetics and local H(2)(18)O residues were determined and analyzed by mathematical modeling. MVO(2) recovery from H(2)(18)O was >93% compared with that according to Fick. LMF ranged from 1.91 to 11.24 ml. min(-1). g(-1), and local H(2)(18)O residue ranged from 0.41 to 1.04 micromol/g. Both variables correlated (r = 0.62, n = 64, P < 0.001). Measurements in nine hearts were fitted by modeling using capillary permeability-surface area products (PS(c)) from 2 to 10 ml. min(-1). g(-1). With flow-proportional PS(c), a 3.33-fold difference in LMF was associated with a 6.45-fold difference in local MVO(2). Both LMF and local oxidative metabolism are spatially heterogeneous, and they correlate to one another.  相似文献   

16.
Magnesium (Mg) deficiency and oxidative stress are independently implicated in the etiopathogenesis of various cardiovascular disorders. This study was undertaken to examine the hypothesis that Mg deficiency augments the myocardial response to oxidative stress. Electrically stimulated rat papillary muscle was used for recording the contractile variation. Biochemical variables of energy metabolism (adenosine triphosphate (ATP) and creatine phosphate) and markers of tissue injury (lactate dehydrogenase (LDH) release and lipidperoxidation), which can affect myocardial contractility, were assayed in Langendorff-perfused rat hearts. Hydrogen peroxide (100 micromol/L) was used as the source of reactive oxygen species. The negative inotropic response to H2O2 was significantly higher in Mg deficiency (0.48 mmol Mg/L) than in Mg sufficiency (1.2 mmol Mg/L). Low Mg levels did not affect ATP levels or tissue lipid peroxidation. However, H2O2 induced a decrease in ATP; enhanced lipid peroxidation and the release of LDH were augmented by Mg deficiency. Increased lipid peroxidation associated with a decrease in available energy might be responsible for the augmentation of the negative inotropic response to H2O2 in Mg deficiency. The observations from this study validate the hypothesis that myocardial response to oxidative stress is augmented by Mg deficiency. This observation has significance in ischemia-reperfusion injury, where Mg deficiency can have an additive effect on the debilitating consequences.  相似文献   

17.
Doxorubicin (DOX)-induced cardiotoxicity is thought to be mediated by the generation of superoxide anion radicals (superoxide) from redox cycling of DOX in cardiomyocyte mitochondria. Reduction of superoxide generates H(2)O(2), which diffuses throughout the cell and potentially contributes to oxidant-mediated cardiac injury. The mitochondrial and cytosolic glutathione peroxidase 1 (Gpx1) primarily functions to eradicate H(2)O(2). In this study, we hypothesize that Gpx1 plays a pivotal role in the clearance of H(2)O(2) generated by DOX. To test this hypothesis, we compared DOX-induced cardiac dysfunction, mitochondrial injury, protein nitration, and apoptosis in Gpx1-deficient and wild type mouse hearts. The Gpx1-deficient hearts showed increased susceptibility to DOX-induced acute functional derangements than wild type hearts, including impaired contractility and diastolic properties, decreased coronary flow rate, and reduced heart rate. In addition, DOX treatment impaired the mitochondrial function of Gpx1-deficient hearts. Specifically, Gpx1-deficient hearts treated with DOX demonstrated an increased rate of NAD-linked state 4 respiration and a decline in the P/O ratio relative to wild type hearts, suggesting that DOX uncouples the electron transfer chain and oxidative phosphorylation in Gpx1-deficient hearts. Finally, apoptosis and protein nitration were significantly increased in Gpx1-deficient mouse hearts compared to wild type hearts. These studies suggest that Gpx1 plays significant roles in protecting DOX-induced mitochondrial impairment and cardiac dysfunction in the acute phase.  相似文献   

18.
Clinical and experimental evidence suggest that increased rates of fatty acid oxidation in the myocardium result in impaired contractile function in both normal and diabetic hearts. Glucose utilization is decreased in type 1 diabetes, and fatty acid oxidation dominates for energy production at the expense of an increase in oxygen requirement. The objective of this study was to examine the effect of chronic treatment with trimetazidine (TMZ) on cardiac mechanical function and fatty acid oxidation in streptozocin (STZ)-diabetic rats. Spontaneously beating hearts from male Sprague-Dawley rats were subjected to a 60-minute aerobic perfusion period with a recirculating Krebs-Henseleit solution containing 11 mmol/L glucose, 100 muU/mL insulin, and 0.8 mmol/L palmitate prebound to 3% bovine serum albumin (BSA). Mechanical function of the hearts, as cardiac output x heart rate (in (mL/min).(beats/min).10-2), was deteriorated in diabetic (73 +/- 4) and TMZ-treated diabetic (61 +/- 7) groups compared with control (119 +/- 3) and TMZ-treated controls (131 +/- 6). TMZ treatment increased coronary flow in TMZ-treated control (23 +/- 1 mL/min) hearts compared with untreated controls (18 +/- 1 mL/min). The mRNA expression of 3-ketoacyl-CoA thiolase (3-KAT) was increased in diabetic hearts. The inhibitory effect of TMZ on fatty acid oxidation was not detected at 0.8 mmol/L palmitate in the perfusate. Addition of 1 mumol/L TMZ 30 min into the perfusion did not affect fatty acid oxidation rates, cardiac work, or coronary flow. Our results suggest that higher expression of 3-KAT in diabetic rats might require increased concentrations of TMZ for the inhibitory effect on fatty acid oxidation. A detailed kinetic analysis of 3-KAT using different concentrations of fatty acid will determine the fatty acid inhibitory concentration of TMZ in diabetic state where plasma fatty acid levels are increased.  相似文献   

19.
High density lipoproteins (HDL) protect the heart against ischemia/reperfusion (I/R) injury, and matrix metalloproteinase-2 (MMP-2) directly contributes to cardiac contractile dysfunction after I/R. To investigate the possible involvement of MMP-2 inhibition in HDL-mediated cardioprotection, isolated rat hearts underwent 20 min of low-flow ischemia and 30 min of reperfusion. Plasma-derived and synthetic HDL attenuated the I/R-induced cardiac MMP-2 activation and release in a dose-dependent way. The attenuation of I/R-induced MMP-2 activation by HDL correlated with the reduction of post-ischemic contractile dysfunction and cardiomyocyte necrosis. These results indicate prevention of MMP-2 activation as a novel mechanism for HDL-mediated cardioprotection.  相似文献   

20.
Davies KJ 《IUBMB life》1999,48(1):41-47
Proliferating mammalian cells exhibit a broad spectrum of responses to oxidative stress, depending on the stress level encountered. Very low levels of hydrogen peroxide, e.g., 3 to 15 microM, or 0.1 to 0.5 micromol/10(7) cells, cause a significant mitogenic response, 25% to 45 % growth stimulation. Greater concentrations of H2O2, 120 to 150 microM, or 2 to 5 micromol/10(7) cells, cause a temporary growth arrest that appears to protect cells from excess energy use and DNA damage. After 4-6 h of temporary growth arrest, many cells will exhibit up to a 40-fold transient adaptive response in which genes for oxidant protection and damage repair are preferentially expressed. After 18 h of H2O2 adaptation (including the 4-6 h of temporary growth arrest) cells exhibit maximal protection against oxidative stress. The H2O2 originally added is metabolized within 30-40 min, and if no more is added the cells will gradually de-adapt, so that by 36 h after the initial H2O2 stimulus they have returned to their original level of H2O2 sensitivity. At H2O2 concentrations of 250 to 400 microM, or 9 to 14 micromol/10(7) cells, mammalian fibroblasts are not able to adapt but instead enter a permanently growth-arrested state in which they appear to perform most normal cell functions but never divide again. This state of permanent growth arrest has often been confused with cell death in toxicity studies relying solely on cell proliferation assays as measures of viability. If the oxidative stress level is further increased to 0.5 to 1.0 mM H2O2, or 15 to 30 micromol/10(7) cells, apoptosis results. This oxidative stress-induced apoptosis involves nuclear condensation, loss of mitochondrial transmembrane potential, degradation/down-regulation of mitochondrial mRNAs and rRNAs, and degradation/laddering of both nuclear and mitochondrial DNA. At very high H2O2 concentrations of 5.0 to 10.0 mM, or 150 to 300 micromol/10(7) cells and above, cell membranes disintegrate, proteins and nucleic acids denature, and necrosis swiftly follows. Cultured cells grown in 20% oxygen are essentially preadapted or preselected to survive under conditions of oxidative stress. If cells are instead grown in 3% oxygen, much closer to physiological cellular levels, they are more sensitive to an oxidative challenge but exhibit far less accumulated oxidant damage. This broad spectrum of cellular responses to oxidant stress, depending on the amount of oxidant applied and the concentration of oxygen in the cell culture system, provides for a new paradigm of cellular oxidative stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号