首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fraction of the nuclear estrogen receptor alpha (ERalpha) is localized to the plasma membrane region of 17beta-estradiol (E2) target cells. We previously reported that ERalpha is a palmitoylated protein. To gain insight into the molecular mechanism of ERalpha residence at the plasma membrane, we tested both the role of palmitoylation and the impact of E2 stimulation on ERalpha membrane localization. The cancer cell lines expressing transfected or endogenous human ERalpha (HeLa and HepG2, respectively) or the ERalpha nonpalmitoylable Cys447Ala mutant transfected in HeLa cells were used as experimental models. We found that palmitoylation of ERalpha enacts ERalpha association with the plasma membrane, interaction with the membrane protein caveolin-1, and nongenomic activities, including activation of signaling pathways and cell proliferation (i.e., ERK and AKT activation, cyclin D1 promoter activity, DNA synthesis). Moreover, E2 reduces both ERalpha palmitoylation and its interaction with caveolin-1, in a time- and dose-dependent manner. These data point to the physiological role of ERalpha palmitoylation in the receptor localization to the cell membrane and in the regulation of the E2-induced cell proliferation.  相似文献   

2.
17beta-Estradiol (E2)-induced rapid functions (from seconds to minutes) can be attributed to a fraction of nuclear estrogen receptor-alpha (ERalpha) localized at the plasma membrane. As a potential mechanism, we postulated that S-palmitoylation of the Cys447 residue may explain the ability of ERalpha to associate to plasma membrane making possible E2-dependent rapid functions [e.g., extracellular regulated kinase (ERK) activation]. Here, we report direct evidence that the mutation of the Cys447 residue to Ala impairs human ERalpha palmitoylation and E2-induced rapid ERK phosphorylation when transfected in ER-devoid HeLa cells. Moreover, the Cys447Ala mutation significantly decreases the E2-induced transactivation of an estrogen responsive element construct probe. Similar effects were obtained treating HeLa cells transfected with wild type ERalpha with the palmitoyl-acyltransferase inhibitor 2-bromo-hexadecanoic acid. Moreover, the deletion of the A-D domains (containing the DNA binding region) of ERalpha had no consequences on [(3)H]palmitate incorporation, whereas no palmitoylation occurred in the ERalpha mutant devoid of the E domain (i.e., ligand binding domain). These results point to the pivotal role of the Cys447 residue in ERalpha palmitoylation and in the modulation of E2-induced non-genomic functions.  相似文献   

3.
Acute administration of 17beta-estradiol (E(2)) exerts antiatherosclerotic effects in healthy postmenopausal women. The vasoprotective action of E(2) may be partly accounted for by a rapid increase in nitric oxide (NO) levels in endothelial cells (ECs). However, the signaling mechanisms producing this rise are unknown. In an attempt to address the short-term effect of E(2) on endothelial NO production, confluent bovine aortic endothelial cells (BAECs) were incubated in the absence or presence of E(2), and NO production was measured. Significant increases in NO levels were detected after only 5 min of E(2) exposure without a change in the protein levels of endothelial NO synthase (eNOS). This short-term effect of estrogen was significantly blunted by various ligands which decrease intracellular Ca(2+) concentration. Furthermore, plasma membrane-impermeable BSA-conjugated E(2) (E(2)BSA) stimulated endothelial NO release, indicating that in the current system the site of action of E(2) is on the plasma membrane rather than the classical nuclear receptor. The partial antagonist tamoxifen did not block E(2)-induced NO production; however, a pure estrogen receptor alpha (ERalpha) antagonist ICI 182,780 completely inhibited E(2)-stimulated NO release. The binding of E(2) to the membrane was confirmed using FITC-labeled E(2)BSA (E(2)BSA-FITC). Western blot analysis showed that plasmalemmal caveolae possess ERalpha in addition to well-known caveolae-associated proteins eNOS and caveolin. This study demonstrates that the nongenomic and short-term effect of E(2) on endothelial NO release is Ca(2+)-dependent and occurs via ERalpha localized in plasmalemmal caveolae.  相似文献   

4.
5.
Estrogen causes rapid endothelial nitric oxide (NO) production because of the activation of plasma membrane-associated estrogen receptors (ER) coupled to endothelial NO synthase (eNOS). In the present study, we determined the role of G proteins in eNOS activation by estrogen. Estradiol-17beta (E(2), 10(-8) m) and acetylcholine (10(-5) m) caused comparable increases in NOS activity (15 min) in intact endothelial cells that were fully blocked by pertussis toxin (Ptox). In addition, exogenous guanosine 5'-O-(2- thiodiphosphate) inhibited E(2)-mediated eNOS stimulation in isolated endothelial plasma membranes, and Ptox prevented enzyme activation by E(2) in COS-7 cells expressing ERalpha and eNOS. Coimmunoprecipitation studies of plasma membranes from COS-7 cells transfected with ERalpha and specific Galpha proteins demonstrated E(2)-stimulated interaction between ERalpha and Galpha(i) but not between ERalpha and either Galpha(q) or Galpha(s); the observed ERalpha-Galpha(i) interaction was blocked by the ER antagonist ICI 182,780 and by Ptox. E(2)-stimulated ERalpha-Galpha(i) interaction was also demonstrable in endothelial cell plasma membranes. Cotransfection of Galpha(i) into COS-7 cells expressing ERalpha and eNOS yielded a 3-fold increase in E(2)-mediated eNOS stimulation, whereas cotransfection with a protein regulator of G protein signaling, RGS4, inhibited the E(2) response. These findings indicate that eNOS stimulation by E(2) requires plasma membrane ERalpha coupling to Galpha(i) and that activated Galpha(i) mediates the requisite downstream signaling events. Thus, novel G protein coupling enables a subpopulation of ERalpha to initiate signal transduction at the cell surface. Similar mechanisms may underly the nongenomic actions of other steroid hormones.  相似文献   

6.
Estradiol (E(2)) exerts not only genotropic but also nongenomic actions through nuclear estrogen receptors (ER). Here, we provide a novel paradigm for nongenomic E(2) signaling independent of nuclear ER. E(2) induces a rapid rise in the intracellular free Ca(2+) concentration ([Ca(2+)](i)) through membrane estrogen receptors in murine RAW 264.7 macrophages. This E(2)-induced Ca(2+) signaling is not prevented by different ER blockers and cannot directly activate stably transfected c-fos promoter or the mitogen-activated protein kinases p38, ERK1/2, and SAPK/JNK, or NO production. However, the E(2)-induced rise in [Ca(2+)](i) specifically down-regulates the serum-stimulated activation of c-fos promoter and ERK1/2, and conversely, it specifically up-regulates lipopolysaccharide-stimulated activation of c-fos promoter, p38, and NO production. The E(2)-changed activation of c-fos promoter can be prevented by an intracellular Ca(2+) chelator. Our data indicate that E(2)-induced nongenomic Ca(2+) signaling through membrane ER is able to specifically modulate genotropic signaling pathways with impact on macrophage activation.  相似文献   

7.
8.
Estrogen actions are mediated by a complex interface of direct control of gene expression (the so-called "genomic action") and by regulation of cell signaling/phosphorylation cascades, referred to as the "nongenomic," or extranuclear, action. We have previously described the identification of MNAR (modulator of nongenomic action of estrogen receptor) as a novel scaffold protein that regulates estrogen receptor alpha (ERalpha) activation of cSrc. In this study, we have investigated the role of MNAR in 17beta-estradiol (E2)-induced activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Consistent with our previous results, a direct correlation was established between MNAR expression levels and E2-induced activation of PI3 and Akt kinases. Endogenous MNAR, ERalpha, cSrc, and p85, the regulatory subunit of PI3 kinase, interacted in MCF7 cells treated with E2. The interaction between p85 and MNAR required activation of cSrc and MNAR phosphorylation on Tyr 920. Consequently, the mutation of this tyrosine to alanine (Y920A) abrogated the interaction between MNAR and p85 and the E2-induced activation of the PI3K/Akt pathway, which was required for the E2-induced protection of MCF7 cells from apoptosis. Nonetheless, the Y920A mutant potentiated the E2-induced activation of the Src/MAPK pathway and MCF7 cell proliferation, as observed with the wild-type MNAR. These results provide new and important insights into the molecular mechanisms of E2-induced regulation of cell proliferation and apoptosis.  相似文献   

9.
10.
In cultured human vascular smooth muscle cells (VSMC), estradiol-17beta (E2) induced a biphasic effect on DNA synthesis, i.e., stimulation at low concentrations and inhibition at high concentrations. Additionally, E2 increased the specific activity of creatine kinase (CK) in these cells. Observations that novel protein-bound membrane impermeant estrogenic complexes could elicit inhibition of DNA synthesis, suggested interaction via membranal binding sites. Nevertheless other effects, such as increasing CK activity were only seen with native E2 but not with E2-BSA, thus indicating that the classical nuclear receptor pathway was involved. In the present report, we confirm that human VSMC express both ERalpha and ERbeta. Further, pretreatment of cultured VSMC with the Vitamin D non-calcemic analog JK 1624 F2-2 (JKF) increased ERalpha mRNA (100-200%) but decreased ERbeta mRNA (30-40%) expression as measured by real time PCR. ERalpha protein expression assessed by Western blot analysis increased (25-50%) in parallel, whereas ERbeta protein expression declines (25-55%). Using ovalbumin bound to E2 (Ov-E2) linked to Eu (Eu-Ov-E2), to assess specific membrane binding sites, we observed that membranal binding was down regulated by JKF by 70-80%. In contrast, total cell binding of 3[H] E2, that nearly entirely represents intracellular E2 binding, was increased by 60-100% by the same Vitamin D analog. The results provide evidence that the effects of JKF on ERalpha/ERbeta as well as on membranal versus nuclear binding of estrogen are divergent and show differential modulation.  相似文献   

11.
In various cell types, there is increasing evidence for nongenomic steroid effects, i.e., effects that are not mediated via the classical steroid receptors. However, little is known about the involvement of the nongenomic pathway of estradiol (E2) on mammalian oocyte in vitro maturation (IVM). The aim of this study was to investigate whether the effects of E2 on bovine oocyte IVM are mediated via a plasma membrane receptor (nongenomic). First, we investigated the expression of estradiol (classical) receptor alpha (ERalpha) and beta (ERbeta) mRNA in oocytes and cumulus cells (CC). We also studied the effects of different exposure times to E2 (before and after germinal vesicle breakdown, GVBD) on nuclear maturation. To study the possible involvement of the putative estradiol plasma membrane receptor on the IVM of oocytes, we used E2 conjugated with bovine serum albumin (E2-BSA), which cannot cross the plasma membranes. Our results demonstrate that oocytes expressed ERbeta mRNA, while CC expressed both ERalpha and ERbeta mRNA. Exposure to E2 during the first 8 h of culture (before GVBD) induced a block at the metaphase I stage (MI). However, the presence of E2 after GVBD induced an increase of oocytes with nuclear aberrations. Meiotic spindle organization was severely affected by E2 during IVM and multipolar spindle was the most frequently observed aberration. Exposure of oocytes to E2-BSA did not affect nuclear maturation, blastocyst formation rate, nor embryo quality. Our results suggest that the detrimental effects of E2 on in vitro nuclear maturation of bovine oocyte are not exerted via a plasma membrane receptor.  相似文献   

12.
Estrogen receptors (ERs) are members of the nuclear receptor superfamily and are involved in regulation of fallopian tube functions (i.e., enhancement of protein secretion, formation of tubal fluid, and regulation of gamete transport). However, the ER subtype-mediated mechanisms underlying these processes have not been completely clarified. Recently, we identified ERbeta expression and localization in rat fallopian tubes, suggesting a potential biological function of ERbeta related to calcium-dependent ciliated beating. Here we provide for the first time insight into the less studied ERalpha isoforms, which mediate estrogen-dependent production and secretion of IGFs in vivo. First, Western blot studies revealed that three ERalpha isoforms were expressed in mouse fallopian tubes. Subsequent immunohistochemical analysis showed that ERalpha was detected in all cell types, whereas ERbeta was mainly localized in ciliated epithelial cells. Second, ERalpha isoform levels were dramatically downregulated in mouse fallopian tubes by treatment with E(2) or PPT, an ERalpha agonist, in a time-dependent manner. Third, the presence of ICI 182,780, an ER antagonist, blocked the E(2)- or PPT-induced downregulation of tubal ERalpha isoform expression in mice. However, alteration of ERalpha immunoreactivity following ICI 182,780 treatment was only detected in epithelial cells of the ampullary region. Fourth, changes in ERalpha isoform expression were found to be coupled to multiple E(2) effects on tubal growth, protein synthesis, and secretion in mouse fallopian tube tissues and fluid. In particular, E(2) exhibited positive regulation of IGF-I and IGF-II protein levels. Finally, using growth hormone receptor (GHR) gene-disrupted mice, we showed that regulation by E(2) of IGF production was independent of GH-induced GHR signaling in mouse fallopian tubes in vivo. These data, together with previous studies from our laboratory, suggest that the long-term effects of estrogen agonist promote IGF synthesis and secretion in mouse tubal epithelial cells and fallopian tube fluid via stimulation of ERalpha.  相似文献   

13.
Although estrogen is known to activate endothelial nitric oxide synthase (eNOS) in the vascular endothelium, the molecular mechanism responsible for this effect remains to be elucidated. In studies of both human umbilical vein endothelial cells (HUVECs) and simian virus 40-transformed rat lung vascular endothelial cells (TRLECs), 17beta-estradiol (E2), but not 17alpha-E2, caused acute activation of eNOS that was unaffected by actinomycin D and was specifically blocked by the pure estrogen receptor antagonist ICI-182,780. Treatment of both TRLECs and HUVECs with 17beta-E2 stimulated the activation of Akt, and the PI3K inhibitor wortmannin blocked the 17beta-E2-induced activation of Akt. 17beta-E2-induced Akt activation was also inhibited by ICI-182,780, but not by actinomycin D. Either treatment with wortmannin or exogenous expression of a dominant negative Akt in TRLECs decreased the 17beta-E2-induced eNOS activation. Moreover, 17beta-E2-induced Akt activation actually enhances the phosphorylation of eNOS. 17beta-E2-induced Akt activation was dependent on both extracellular and intracellular Ca(2+). We further examined the 17beta-E2-induced Akt activity in Chinese hamster ovary (CHO) cells transiently transfected with cDNAs for estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta). 17beta-E2 stimulated the activation of Akt in CHO cells expressing ERalpha but not in CHO cells expressing ERbeta. Our findings suggest that 17beta-E2 induced eNOS activation through an Akt-dependent mechanism, which is mediated by ERalpha via a nongenomic mechanism.  相似文献   

14.
Marino M  Ascenzi P 《Steroids》2008,73(9-10):853-858
S-Palmitoylation is a widespread post-translational modification of integral and/or peripheral proteins occurring in all eukaryotic cells. The family of S-palmitoylated proteins is large and diverse and recently, estrogen receptor isoforms (ERalpha and ERbeta) belonging to the nuclear receptor superfamily have been added to the palmitoylproteoma. S-Palmitoylation allows ERalpha and ERbeta localization at the plasma membrane, where they associate with caveolin-1. Upon 17beta-estradiol (E2) stimulation, ERalpha dissociates from caveolin-1 allowing the activation of rapid signals relevant for cell proliferation. In contrast to ERalpha, E2 increases ERbeta association with caveolin-1 and activates p38 kinase and the downstream pro-apoptotic cascade (i.e., caspase-3 activation and PARP cleavage). These data highlight the physiological role of palmitoylation in modulating the ERalpha and ERbeta localization at the plasma membrane and the regulation of different E2-induced non-genomic functions relevant for controlling cell proliferation.  相似文献   

15.
Nutritional flavonoids modulate estrogen receptor alpha signaling   总被引:3,自引:0,他引:3  
  相似文献   

16.
The effects of 2-chloro-2'-deoxyadenosine, beta-D-arabinofuranosyl-2-fluoroadenine, and 5-aza-2'-deoxycytidine on promoter methylation of the selected tumor suppressor genes (i.e., ERalpha, BRCA1, E-cadherin, PTEN, and APC) were estimated using methylation-sensitive restriction analysis (MSRA) in K562 cells (human erythroleukemic cell line) and MCF-7 cells (human breast cancer cell line). In both cell lines all tested drugs completely reduced methylation of PTEN and APC promoters. The results indicate that the tested nucleoside analogues, which are known inhibitors of DNA synthesis, also are implicated in indirect (or direct in the case of 5-aza-dCyd) regulation of post-replicative DNA modifications (i.e., DNA methylation).  相似文献   

17.
18.
Estradiol stimulates endothelial nitric oxide synthase (eNOS) via the activation of plasma membrane (PM)-associated estrogen receptor (ER) alpha. The process requires Src and erk signaling and eNOS phosphorylation by phosphoinositide 3-kinase (PI3 kinase)-Akt kinase, with Src and PI3 kinase associating with ERalpha upon ligand activation. To delineate the basis of nongenomic eNOS stimulation, the potential roles of ERalpha domains necessary for classical nuclear function were investigated in COS-7 cells. In cross-linking studies, estradiol-17beta (E2) caused PM-associated ERalpha to form dimers. However, eNOS activation by E2 was unaltered for a dimerization-deficient mutant ERalpha (ERalphaL511R). In contrast, ERalpha mutants lacking the nuclear localization signals (NLS), NLS2,3 (ERalphaDelta250-274) or the DNA binding domain (ERalphaDelta185-251), which targeted normally to PM and caveolae/rafts, were incapable of activating eNOS. The loss of NLS2/NLS3 prevented Src and erk activation, and it altered ligand-induced PI3 kinase-ERalpha interaction and prevented eNOS phosphorylation. Loss of the DNA binding domain did not change E2 activation of Src or erk, but ligand-induced PI3 kinase-ERalpha binding and eNOS phosphorylation did not occur. Thus, dimerization is not required for ERalpha coupling to eNOS; however, NLS2/NLS3 plays a role in Src activation, and the DNA binding region is involved in the dynamic interaction between ERalpha and PI3 kinase.  相似文献   

19.
Antibodies (Abs) raised against the estrogen receptor-alpha (ERalpha) were used to investigate the role of ERalpha proteins located at the plasma membrane in mediating the rapid, estrogen-stimulated secretion of prolactin (PRL) from rat pituitary GH(3)/B6/F10 cells. Exposure of the cells to 1 nM 17beta-estradiol (E(2)) significantly increased PRL release after 3 or 6 min. When ERalpha Abs that bind specifically to ERalpha but are too large to diffuse into cells were tested for activity at the cell membrane, Ab R4, targeted to an ERalpha hinge region sequence, increased PRL release in a time- and concentration-dependent fashion. Ab H151, directed against a different hinge region epitope, decreased PRL release and blocked the stimulatory action of E(2). Abs raised against the DNA binding domain (H226) or the carboxyl terminus (C542) were not biologically active. When each Ab was examined for recognition of ERalpha on the cell surface by immunocytochemistry, all except H151 generated immunostaining in aldehyde-fixed cells. In live cells, however, Ab H151 but not Ab R4 blocked the membrane binding of fluorescently tagged E(2)-BSA. Overall, the data indicate that plasma membrane ERalpha proteins mediate estrogen-stimulated PRL release from GH(3)/B6/F10 cells. These results may also convey information about conformationally sensitive areas of the membrane form of ERalpha involved in rapid, nongenomic responses to estrogens.  相似文献   

20.
5,6,11,12,17,18-Hexahydrocyclonona[1,2-b:4,5-b*:7,8-b**]triindole (CTr) is a major digestive product of indole-3-carbinol (I3C) from Brassica vegetables and exhibits strong estrogenic activities. CTr increases proliferation of estrogen-dependent breast tumor cells, binds with strong affinity for the estrogen receptor-alpha (ERalpha), and activates expression of estrogen (E(2))-dependent genes. To begin to examine the structural features that determine the biological activity of CTr, we prepared and studied the effects of two analogs, 9,18-dihydro-12H-[1,2,5]trithionino[3,4-b:6,7-b*:9,8-b**]triindole (S(3)CTr) and 5,6,11,12,17,18-hexahydro-5,11,17-trimethylcyclonona[1,2-b:4,5-b*:7,8-b**]triindole (Me(3)CTr). N-Methylation of CTr completely ablated the estrogenic activities of CTr. In the dose range in which CTr was clearly estrogenic, Me(3)CTr exhibited no detectable effect on cell growth, ERalpha binding to E(2), or ERalpha-responsive gene expression. S(3)CTr showed mixed ERalpha agonist activities. It bound to the ERalpha and activated receptor binding with DNA, weakly activated expression of transfected E(2)-responsive reporter gene constructs, and strongly inhibited the E(2)-induced activation of these reporter constructs. S(3)CTr activated aryl hydrocarbon receptor (AhR)-mediated pathways, consistent with the moderately strong binding affinity of S(3)CTr for the AhR. Comparisons of the conformational characteristics among CTr and its two analogs indicated that the estrogenic effects of CTr are highly sensitive to apparently minor structural modifications, and further supported the hypothesis for a central role of hydrogen bonding around the nitrogen atom in CTr binding to the ligand binding site of ERalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号