首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions.  相似文献   

2.
When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39 degrees C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50 degrees C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions.  相似文献   

3.
Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome‐sequenced strains and is prevalent in livestock‐associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild‐type and the fucP mutant are chemotactic towards fucose. C. jejuni 81‐176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81‐176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc‐). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.  相似文献   

4.
Campylobacter jejuni NCTC 11168 is widely used in research, but at least two variants have been reported. The available genome was sequenced from a variant which later showed a different phenotype and gene expression profile. Here we present the complete genome sequence of a second variant of C. jejuni NCTC 11168.  相似文献   

5.
The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.  相似文献   

6.
The study investigated the prevalence of Campylobacter spp. in Finnish cattle at slaughter and carcass contamination after slaughter. During the period January to December 2003, bovine rectal fecal samples (n = 952) and carcass surface samples (n = 948) from 12 out of 15 Finnish slaughterhouses were examined. In total, campylobacters were detected in 31.1% of fecal samples and in 3.5% of carcass surface samples. Campylobacter jejuni was isolated from 19.5%, Campylobacter coli from 2.2%, and presumptive Campylobacter hyointestinalis from 10.8% of fecal samples. Campylobacters were detected in 4.4% and 37.4% of the fecal samples examined both by direct culture and by enrichment (n = 730), respectively, suggesting a low level of campylobacters in the intestinal content. A slightly increasing trend was observed in the overall prevalence of campylobacters towards the end of summer and autumn. Seventeen different serotypes were detected among the fecal C. jejuni isolates using a set of 25 commercial antisera for serotyping heat-stable antigens (Penner) of C. jejuni by passive hemagglutination. The predominant serotypes, Pen2 and Pen4-complex, were isolated from 52% of the fecal samples. Subtyping by pulsed-field gel electrophoresis (SmaI) yielded 56 and 20 subtypes out of 330 fecal and 70 carcass C. jejuni isolates, respectively. MICs of ampicillin, enrofloxacin, erythromycin, gentamicin, nalidixic acid, and oxytetracycline for 187 C. jejuni isolates were determined using a commercial broth microdilution method. Sixteen (9%) of the isolates were resistant to at least one of the antimicrobials tested. Resistance to nalidixic acid was most commonly detected (6%). No multiresistance was observed.  相似文献   

7.
In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages.  相似文献   

8.
Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs), which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40) and 90% for C. coli (n = 19). CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP). Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.  相似文献   

9.
Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule. In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data demonstrate that F341 binds to the flagellum by perpendicular attachment with visible phage tail fibers interacting directly with the flagellum. Our data are consistent with the movement of the C. jejuni flagellum being required for F341 to travel along the filament to reach the basal body of the bacterium. The initial binding to the flagellum may cause a conformational change of the phage tail that enables DNA injection after binding to a secondary receptor.  相似文献   

10.
Campylobacter jejuni undergoes a dramatic morphological transformation from a corkscrew-shaped rod to a coccoid form in response to unfavorable conditions. It has been speculated that the coccoid plays an important role in the survival and dissemination of C. jejuni but questions still remain regarding the viability of coccoid cells. Characterization of the genome of coccoid cells found that newly formed coccoid cells (i.e., 1–3 days) had a SmaI-digestion profile identical to that of spiral-shaped cells; however, there was a progressive degradation of the DNA with continued incubation at 37°C. Concomitant with genome degradation was the detection of DNA in supernatants of coccoid cells. In contrast, cells incubated at 4°C retained a spiral shape and their SmaI-digestion profile for 8 weeks and released little DNA into the medium. Thus, low temperature inhibited both coccoid formation and genome degradation. Collectively, these data support the theory that the coccoid form of C. jejuni is a manifestation of cellular degradation and spiral-shaped cells, or possibly coccoid cells formed at low temperature, are the most probable candidates for a viable but nonculturable form of this pathogen.  相似文献   

11.
The mechanisms used by Campylobacter jejuni to colonize the (chicken) intestinal tract have not been defined. In this study, we obtained evidence that in the presence of chicken serum and mucus, C. jejuni secreted proteins that may play a role in the colonization of chicken gut (Campylobacter invasion antigen = Cia). C. jejuni strains NCTC11168V1 and 81-176, as well as an NCTC11168V1 flaA mutant, were found to colonize intestinal tract and secrete proteins in the presence of chicken mucus, chicken serum, or fetal bovine serum in cell culture–conditioned medium. C. jejuni strain NCTC11168V26, which was observed to be a poor colonizer compared with the other C. jejuni isolates, did not secrete Cia proteins. Secreted proteins were also recognized by Western immunoblot using sera from birds that had been colonized by C. jejuni. These data suggest that C. jejuni secretes Cia proteins during colonization of chicken gut and that these Cia proteins play an important role in colonization.  相似文献   

12.
Evolutionary theory predicts that selection will favour sperm traits that maximize fertilization success in local fertilization environments. In externally fertilizing species, osmolality of the fertilization medium is known to play a critical role in activating sperm motility, but there remains limited evidence for adaptive responses to local osmotic environments. In this study, we used a split‐sample experimental design and computer‐assisted sperm analysis to (i) determine the optimal medium osmolality for sperm activation (% sperm motility and sperm velocity) in male common eastern froglets (Crinia signifera), (ii) test for among‐population variation in percentage sperm motility and sperm velocity at various activation‐medium osmolalities and (iii) test for among‐population covariation between sperm performance and environmental osmolality. Frogs were obtained from nine populations that differed in environmental osmolality, and sperm samples of males from different populations were subjected to a range of activation‐medium osmolalities. Percentage sperm motility was optimal between 10 and 50 mOsm kg?1, and sperm velocity was optimal between 10 and 100 mOsm kg?1, indicating that C. signifera has evolved sperm that can function across a broad range of osmolalities. As predicted, there was significant among‐population variation in sperm performance. Furthermore, there was a significant interaction between activation‐medium osmolality and environmental osmolality, indicating that frogs from populations with higher environmental osmolality produced sperm that performed better at higher osmolalities in vitro. This finding may reflect phenotypic plasticity in sperm functioning, or genetic divergence resulting from spatial variation in the strength of directional selection. Both of these explanations are consistent with evolutionary theory, providing some of the first empirical evidence that local osmotic environments can favour adaptive sperm motility responses in species that use an external mode of fertilization.  相似文献   

13.
Preston broth and agar incubated at either 37 or 42°C have been widely used to isolate campylobacters from foodstuffs. The consequences of using either incubation temperature were investigated. Retail packs of raw chicken (n = 24) and raw lamb liver (n = 30) were purchased. Samples were incubated in Preston broth at 37 and 42°C and then streaked onto Preston agar and incubated as before. Two Campylobacter isolates per treatment were characterized. Poultry isolates were genotyped by random amplification of polymorphic DNA (RAPD), pulsed-field gel electrophoresis (PFGE), and flagellin PCR-restriction fragment length polymorphism, and lamb isolates were genotyped by RAPD only. In total, 96% of the poultry and 73% of the lamb samples yielded campylobacters. The lamb isolates were all Campylobacter jejuni, as were 96% of the poultry isolates, with the remainder being Campylobacter lari. The incubation temperature had no significant effect on the number of positive samples or on the species isolated. However, genotyping of the C. jejuni isolates revealed profound differences in the types obtained. Overall (from poultry and lamb), the use of a single incubation temperature, 37°C, gave 56% of the total number of RAPD C. jejuni genotypes, and hence, 44% remained undetected. The effect was especially marked in the poultry samples, where incubation at 37°C gave 47% of the PFGE genotypes but 53% were exclusively recovered after incubation at 42°C. Thus, the incubation temperature of Preston media selects for certain genotypes of C. jejuni, and to detect the widest range, samples should be incubated at both 37 and 42°C. Conversely, genotyping results arising from the use of a single incubation temperature should be interpreted with caution.  相似文献   

14.
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.  相似文献   

15.
To investigate the influence of hyperosmolar basal media on hybridoma response, S3H5/γ2bA2 and DB9G8 hybridomas were cultivated in a batch mode using hyperosmolar basal media resulting from additional sodium chloride supplementation. The basal media used in this study were IMDM, DMEM, and RPMI 1640, all of which are widely used for hybridoma cell culture. In IMDM, two hybridomas showed different responses to hyperosmotic stress regarding specific MAb productivity (q MAb), though they showed similar depression of cell growth in hyperosmolar media. Unlike S3H5/γ2bA2 hybridoma, the q MAb of DB9G8 hybridoma was not enhanced significantly around 390 mOsm kg?1. The variation of basal media influenced DB9G8 hybridoma response to hyperosmotic stress regarding q MAb. In IMDM, the q MAb of DB9G8 hybridoma was increased by more than 200% when the osmolality increased from 281 to 440 mOsm/kg. However, in RPMI 1640 and DMEM, similar amplitude of osmolality increase resulted in less than 100% increase in q MAb. The variation of basal media also influenced the cell growth in hyperosmolar medium. Both hybridomas were more tolerant against hyperosmotic stress in DMEM than in IMDM, which was found to be due to the high osmolality of standard DMEM. The osmolalities of standard IMDM and DMEM used for inocula preparation were 281 and 316 mOsm kg?1, respectively. Thus, when the cells were cultivated at 440 mOsm kg?1, the cells in IMDM experienced higher osmotic shock than in DMEM. By using the inoculum prepared at 317 mOsm kg?1 in IMDM, S3H5/γ2bA2 cell growth at 440 mOsm kg?1 in IMDM was comparable to that in DMEM. Taken together, the results obtained from this study show that the selection of basal media is an important factor for MAb production by employing hyperosmotic stress.  相似文献   

16.
For epidemiological studies of Campylobacter infections, molecular typing methods that can differentiate campylobacters at the strain level are needed. In this study we used a recently developed genotyping method, amplified fragment length polymorphism (AFLP), which is based on selective amplification of restriction fragments of chromosomal DNA, for genetic typing of Campylobacter jejuni and Campylobacter coli strains derived from humans and poultry. We developed an automated AFLP fingerprinting method in which restriction endonucleases HindIII and HhaI were used in combination with one set of selective PCR primers. This method resulted in evenly distributed band patterns for amplified fragments ranging from 50 to 500 bp long. The discriminatory power of AFLP was assessed with a C. jejuni strain, an isogenic flagellin mutant, and distinct C. jejuni strains having known pulsed-field gel electrophoresis and fla PCR-restriction fragment length polymorphism genotypes. Unrelated C. jejuni strains produced heterogeneous patterns, whereas genetically related strains produced similar AFLP patterns. Twenty-five Campylobacter strains obtained from poultry farms in The Netherlands grouped in three C. jejuni clusters that were separate from a C. coli cluster. The band patterns of 10 C. jejuni strains isolated from humans were heterogeneous, and most of these strains grouped with poultry strains. Our results show that AFLP analysis can distinguish genetically unrelated strains from genetically related strains of Campylobacter species. However, desirable genetically related strains can be differentiated by using other genotyping methods. We concluded that automated AFLP analysis is an attractive tool which can be used as a primary method for subtyping large numbers of Campylobacter strains and is extremely useful for epidemiological investigations.  相似文献   

17.
Bacteria in their natural environments frequently exist as mixed surface-associated communities, protected by extracellular material, termed biofilms. Biofilms formed by the human pathogen Campylobacter jejuni may arise in the gastrointestinal tract of animals but also in water pipes and other industrial situations, leading to their possible transmission into the human food chain either directly or via farm animals. Bacteriophages are natural predators of bacteria that usually kill their prey by cell lysis and have potential application for the biocontrol and dispersal of target bacteria in biofilms. The effects of virulent Campylobacter specific-bacteriophages CP8 and CP30 on C. jejuni biofilms formed on glass by strains NCTC 11168 and PT14 at 37°C under microaerobic conditions were investigated. Independent bacteriophage treatments (n ≥ 3) led to 1 to 3 log10 CFU/cm2 reductions in the viable count 24 h postinfection compared with control levels. In contrast, bacteriophages applied under these conditions effected a reduction of less than 1 log10 CFU/ml in planktonic cells. Resistance to bacteriophage in bacteria surviving bacteriophage treatment of C. jejuni NCTC 11168 biofilms was 84% and 90% for CP8 and CP30, respectively, whereas bacteriophage resistance was not found in similarly recovered C. jejuni PT14 cells. Dispersal of the biofilm matrix by bacteriophage was demonstrated by crystal violet staining and transmission electron microscopy. Bacteriophage may play an important role in the control of attachment and biofilm formation by Campylobacter in situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety.  相似文献   

18.
Campylobacter jejuni is a major human enteric pathogen that displays genetic variability via genomic reorganization and phase variation. This variability can adversely affect the outcomes and reproducibility of experiments. C. jejuni strain 81116 (NCTC11828) has been suggested to be a genetically stable strain (G. Manning, B. Duim, T. Wassenaar, J. A. Wagenaar, A. Ridley, and D. G. Newell, Appl. Environ. Microbiol. 67:1185-1189, 2001), is amenable to genetic manipulation, and is infective for chickens. Here we report the finished annotated genome sequence of C. jejuni strain 81116.  相似文献   

19.
20.
A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh—hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal’s haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg-1). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg-1) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm-1, respectively, and maintained osmotic gradients over 3500 mosmol kg-1, comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号