首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SLC26A6 (or putative anion transporter 1, PAT1) is located on the apical membrane of mouse kidney proximal tubule and mediates exchange in in vitro expression systems. We hypothesized that PAT1 along with a exchange is present in apical membranes of rat kidney proximal tubules. Northern hybridizations indicated the exclusive expression of SLC26A6 (PAT1 or CFEX) in rat kidney cortex, and immunocytochemical staining localized SLC26A6 on the apical membrane of proximal tubules, with complete prevention of the labeling with the preadsorbed serum. To examine the functional presence of apical exchanger, proximal tubules were isolated, microperfused, loaded with the pH-sensitive dye BCPCF-AM, and examined by digital ratiometric imaging. The pH of the perfusate and bath was kept at 7.4. Buffering capacity was measured, and transport rates were calculated as equivalent base flux. The results showed that in the presence of basolateral DIDS (to inhibit cotransporter 1) and apical EIPA (to inhibit Na+/H+ exchanger 3), the magnitude of cell acidification in response to addition of luminal Cl was 5.0-fold higher in the presence than in the absence of . The Cl-dependent base transport was inhibited by 61% in the presence of 0.5 mM luminal DIDS. The presence of physiological concentrations of oxalate in the lumen (200 µM) did not affect the exchange activity. These results are consistent with the presence of SLC26A6 (PAT1) and exchanger activity in the apical membrane of rat kidney proximal tubule. We propose that SLC26A6 is likely responsible for the apical (and Cl/OH) exchanger activities in kidney proximal tubule. putative anion transporter 1; chloride/formate exchanger; SLC26A6  相似文献   

2.
Summary Following perfusion fixation of the rat kidney with glutaraldehyde the proximal tubule cells display small apical vacuoles, large apical vacuoles, and apical vacuoles in which a part of the limiting membrane is invaginated into the vacuole. These invaginated apical vacuoles occur more frequently in proximal convoluted tubules than in proximal straight tubules. One tubular cell may contain apical vacuoles of different sizes and stages of invagination, ranging from larger vacuoles with a wide lumen and a small area of invaginated membrane to smaller elements with no apparent lumen and a large area of invaginated membrane. Invaginated apical vacuoles lie either singly in the cytoplasm or close to the membranes of other apical vacuoles, but never in contact with the cell membrane or the membranes of lysosomes, endoplasmic reticulum, Golgi apparatus, mitochondria and peroxisomes.These findings suggest that the invaginated apical vacuoles are not fixation artifacts, but rather develop in living state in cells of the proximal tubule from spherical endocytotic elements.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

3.
Cytoskeletal proteins of the rat kidney proximal tubule brush border   总被引:3,自引:0,他引:3  
Cytoskeletal components backing the brush border of the rat kidney proximal tubule cell were identified and compared with those of the well characterized intestinal brush border by immuneoverlay and immunocytochemistry. Antibodies reactive against the intestinal microvillus core components, villin and fimbrin, as well as against the terminal web components, spectrin (fodrin) and myosin, were used. Proteins of similar molecular weight to these intestinal brush border cytoskeletal components were identified in isolated kidney brush borders by immuneoverlay. Spectrin, a major component of the terminal web region of both cell types, was more concentrated in the kidney brush border relative to both actin and myosin. By immunofluorescence, villin and fimbrin were localized in the microvilli, and spectrin and myosin were localized to the terminal web region of the brush border. In addition, spectrin was found along the basolateral membranes of the proximal tubule cell, and myosin was detected in a punctate staining pattern throughout its cytoplasm. By immunoelectron microscopy using immunogold labeling procedures, fimbrin and villin were localized in the terminal web as well as in microvilli, and spectrin and myosin were localized to fibrils in the terminal web. A key difference between the epithelia of the two organs is the extensive network of clathrin coated pits found in the terminal web region of the kidney but not the intestinal brush border. The clathrin-rich terminal web region of the kidney, like the intestinal brush border, proved to be quite stable and resistant to disruption by non-ionic detergents and harsh mechanical treatment.  相似文献   

4.
Summary Morphological examination of kidney biopsies from patients with glomerulonephritis and hematuria has revealed the presence of erythrocytes within epithelial cells of the proximal tubule. This observation suggested that the proximal tubule might be capable of phagocytizing morphologically intact erythrocytes. To examine this possibility small quantities of heparinized autologous blood were injected into surface convolutions of proximal tubules of the rat kidney using standard micropuncture techniques. At time intervals ranging from 10 min to 120 h after injection, the kidneys were preserved for light and transmission electron microscopy by drip-fixation with a half-strength Karnovsky's glutaraldehyde-formaldehyde fixative.During the initial 6 h there was a flattening of the brush border and accumulation of electron-dense material representing hemoglobin in apical vacuoles and in lysosome-like structures. From 6 to 15 h after micropuncture, there was progressive loss of the brush border and the simultaneous formation of pseudopodia-like evaginations that extended from the apical plasma membrane and surrounded the individual erythrocytes. By 18 and 24 h, erythrocytes were observed in the proximal tubule cells. At later time intervals, edema, lymphocytic infiltration, and fibrosis were observed in the interstitium. In addition, crystalline structures were present in the lumen and the cells of both proximal and distal tubules. These findings suggest that in addition to their well-established ability to pinocytize hemoglobin and other proteins, the cells of the proximal tubule are capable of phagocytizing morphologically intact autologous erythrocytes. It is possible that phagocytosis by the proximal tubule cells may play a role in the disposal of erythrocytes from the tubular fluid in hematuric conditions.  相似文献   

5.
Summary The apical membrane K+ permeability of the newt proximal tubular cells was examined in the doubly perfused isolated kidney by measuring the apical membrane potential change (V a change) during alteration of luminal K+ concentration and resultant voltage deflections caused by current pulse injection into the lumen.V a change/decade for K+ was 50 mV at K+ concentration higher than 25mm, and the resistance of the apical membrane decreased bt 58% of control when luminal K+ concentration was increased from 2.5 to 25mm. Ba2+ (1mm in the lumen) reducedV a change/decade to 24 mV and increased the apical membrane resistance by 70%. These data support the view that Ba2+-sensitive K+ conductance exists in the apical membrane of the newt proximal tubule. Furthermore, intracellular K+ activity measured by K+-selective electrode was 82.4 ± 3.6 meq/liter, which was higher than that predicted from the Nernst equation for K+ across both cell membranes. Thus, it is concluded that cell K+ passively diffuses, at least in part, through the K+ conductive pathway of the apical membrane.  相似文献   

6.
The present study deals with the dose- and time-dependent uptake of cytochrome c (CYT c) in the proximal tubule of the rat kidney, and shows that there are segment and sex differences in the reabsorption of CYT c. Rats of both sexes were intravenously injected with different doses of CYT c (0.75-9.0 mg per 100 g body weight), and the kidneys were investigated by light and electron microscopy at different times (3 min, 10 min, and 2 h) after the injection. After 3 and 10 min, CYT c was demonstrated in apical vacuoles of different sizes and in some lysosomes of the S1 and S2 segments, whereas after 2 h, CYT c was found only in lysosomes of all three segments of the proximal tubule. At these times, the S1 segment contained more CYT c than the S2 and S3 segments. However, 2 h after the injection of 6 or 9 mg CYT c, the differences between the S1 and S2 segments disappeared almost completely, due to a strong lysosomal accumulation of CYT c in the S2 segment. At all studied times and CYT-c doses, the S3 segment contained less CYT c than the S1 and S2 segments. On the whole, different levels of CYT-c reabsorption were found in the different segments of the proximal tubule, which was saturable with increasing CYT-c doses, i.e. firstly in the proximal and then in the distal parts of the proximal tubule. Two hours after the injection of CYT c, a difference between males and females was observed, with the lysosomes of the S1 and S2 segments of females containing more CYT c than those of males. Thus, more CYT c was reabsorbed in the proximal tubule of females than in that of males.  相似文献   

7.
8.
9.
Isolated rat kidney proximal tubule brush border membrane vesicles exhibit an increase in diacylglycerol levels (20- to 30-fold) and a concomitant decrease in phosphatidylinositol when incubated with [3H]arachidonate-labeled lipids, Ca2+, and deoxycholate. Levels of free arachidonate, triglyceride, and noninositol phospholipids are not altered. These results suggest phosphatidylinositol phosphodiesterase activity is associated with rat proximal tubule brush border membrane. Presence of both deoxycholate and certain divalent cations was necessary to demonstrate enzyme activity. Optimum pH ranged from 7.0 to 8.5. Ca2+, Mg2+, and Mn2+ stimulated diglyceride production while Ba2+, Zn2+, Hg2+, and K+ were ineffective. HgCl2 inhibited Ca2+-stimulated phosphatidylinositol phosphodiesterase. Mg2+ and deoxycholate-dependent enzyme activity was shown to be phosphatidylinositol specific. Sodium lauryl sulfate, tetradecyltrimethylammonium bromide, and Triton X-100 did not activate phosphatidylinositol phosphodiesterase in the presence of Ca2+. In combination with deoxycholate, diglyceride formation was not affected by sodium lauryl sulfate, partially inhibited by Triton X-100, and completely abolished by tetradecyltrimethylammonium bromide. Diglyceride kinase activity was not found associated with brush border membrane phosphatidylinositol phosphodiesterase. ATP (1-5 mM) inhibited Ca2+- or Mg2+-stimulated, deoxycholate-dependent phosphatidylinositol hydrolysis by chelating the required divalent cation.  相似文献   

10.
Summary Normal rat kidney proximal tubule epithelial cell cultures were obtained by collagenase digestion of cortex and studied for 10 days. To assess the purity of the seeding suspension, we histochemically demonstrated γ-glutamyltranspeptidase in >95% of the starting material. To identify cell types in cultures, we investigated several markers. Cells stained positively for lectinArachis hypogaea (rat proximal tubule) and negatively forLotus tetragonolobus (rat distal tubule). Intermediate filament expression of cytokeratin confirmed the epithelial differentiation of the cultured cells. Using indirect immunofluorescence, we found that cultures were negative for vimentin and Factor VIII. Cells exhibited activities of two brush border enzymes, γ-glutamyltranspeptidase and leucine aminopeptidase, and Na+-dependent glucose transport activity. Multicellular domes were evident in the Week 2 of culture. Proliferation was studied by comparing growth factor-supplemented serum-free medium to cells grown in serum; growth enhancers included insulin, hydrocortisone, transferrin, glucose, bovine albumin, and epidermal growth factor. Cells proliferate best in medium with 5 or 10% serum and in serum-free medium supplemented with insulin, hydrocortisone, transferrin, glucose, and bovine albumin. Proliferation was assessed by determining cell number (population doublings). By light microscopy, the cells were squamous with numerous mitochondria, a central nucleus, and a rather well-defined homogeneous ectoplasm. By electron microscopy, the cells were polarized with microvilli and cell junctions at the upper surface and a thin basal lamina toward the culture dish. These data show that the proximal tubule epithelial cells retain a number of functional characteristics and that they represent an excellent model for studies of normal and abnormal biology of the renal proximal tubule epithelium. This project was supported by grant 2-R01-DK15440-16A1 from the National Institutes of Health, Bethesda, MD, and by grant N0001 4-88-K-0427 from the Department of the Navy, Washington, DC.  相似文献   

11.
Normal rat kidney proximal tubule cells in primary and multiple subcultures   总被引:5,自引:0,他引:5  
Summary Anin vitro model to establish primary and subcultures of rat kidney proximal tubule (RPT) cells is described. After excising the kidneys and separating the cortex, the cortical tissue is digested with the enzyme DNAse-collagenase (Type I) resulting in a high yield of viable RPT Cells. The isolated RPT cells are then seeded onto rat tail collagen-coated surfaces and grown to confluency in a serum-free, hormonally defined medium. The cell yield can be increased by transfering the conditioned medium on Day 1 to more rat tail collagen-coated surfaces. RPT cell attachment and morphology was better on rat tail collagen-coated surfaces than on bovine collagen Type I coated surfaces. The culture medium was a 1∶1 mixture of Ham’s F-12 and Dulbecco’s modified Eagle’s medium supplemented with bovine serum albumin, insulin, transferrin, selenium, hydrocortisone, triiodothyronine, epidermal growth factor, and glutamine. The RPT cells became confluent in 7–10 d, at which point they could be subcultured by trypsinizing and growth in the same medium. In some studies, 10 ng/ml cholera toxin was added to the culture medium. We could passage the RPT cells up to 14 times in the presence of cholera toxin. The cells were investigated for activity of several markers. The cells were histochemically positive for alkaline phosphatase and γ-glutamyl transpeptidase activity and synthesized the intermediate filament pankeratin. The RPT cells displayed apically directed sodium-dependent active glucose transport in culture. Hence, the RPT cells retain structural and functional characteristics of transporting renal epithelia in culture. This rat cell culture model will be a valuable tool for substrate uptake and nephrotoxicity studies.  相似文献   

12.
The growth of rat kidney proximal tubule cells was monitored continuously by the cellular incorporation of [methyl-(14)C] thymidine using scintillating microplates. The radioisotope had no effect on cell proliferation over a 5 day period, neither was it extensively converted to thymine. Leibovitz L-15 medium supplemented with bicarbonate proved a good growth medium and its high levels of carbohydrates and amino acids facilitated the appearance of intermediates in the cells' metabolism of additional radioactive amino acids. Kidney proximal tubule cells had a greater potential to process amino acids than BHK-21 cells. The utilization of amino acids by proximal tubule cells differed from that of other organs. The amino acids could be classified into three classes. Members of the first type were only used for protein synthesis (arginine, lysine, histidine and tyrosine). The second class of amino acids yielded only one or two metabolites (leucine and isoleucine), while the last type gave more than two metabolites (alanine, aspartate, glycine, methionine, proline and valine).  相似文献   

13.
14.
Summary The pars descendens (pars recta) of the proximal tubule in the male rat kidney, consisting of the terminal part of the second proximal segment (P2) and of the third proximal segment (P3), was studied with the electron microscope. A technique of tissue orientation and trimming was used which permitted precise topographic definition of the tubules studied in the electron microscope. The terminal descending part of the P2 showed some minor differences from the convoluted part of this segment, and ultrastructure also changed along the course of the P3. In the beginning of the latter segment numerous, shallow interdigitations were observed between adjacent cells; along the course of the segment they decreased in number or disappeared. In the initial part of the P3 mitochondria were more abundant than in the terminal portion of the segment and at least as numerous as in the straight part of the P2. Also, the dense, acid phosphatase-positive cytoplasmic bodies decreased somewhat in size along the course of the P3. The smooth surfaced endoplasmic reticulum reached a higher development in the P3 than anywhere else in the proximal tubules.Investigation supported by grants from: Fonden til Lægevidenskabens Fremme and the Danish Medical Research Council. — The authors are indebted to Mrs. J. Barslund and Mrs. M. Jacobsen for excellent technical assistance.  相似文献   

15.
Evidence for the presence of beta adrenoceptors on proximal tubules from the rat kidney has been obtained using enriched tubule suspensions prepared by Percoll centrifugation. Intact tubules demonstrated simultaneous enrichment of parathyroid hormone and isoproterenol sensitive cAMP production with no enrichment of antidiuretic hormone sensitive cAMP production. Both norepinephrine and epinephrine were less potent than isoproterenol and the stimulatory effect of catecholamines could be blocked with propranolol but not phentolamine. The stimulatory effect of norepinephrine on cellular phenylalanine uptake is blunted by co-addition of isoproterenol suggesting that the beta receptor may modulatory catecholamine stimulated transport.  相似文献   

16.
Changes in the intermediate filament composition of rat kidney proximal tubule cells in culture have been investigated. The data suggest that differentiated tubular epithelial cells do not express vimentin, but vimentin expression is induced when the cells begin to proliferate in culture. The cultured cells are positive for both cytokeratins and vimentin by immunofluorescence microscopy. The data support the concept that the intermediate filament composition of proximal tubule epithelial cells can be altered during proliferation induced by nephrotoxic chemicals or by neoplastic transformation.  相似文献   

17.
Conductive properties of the proximal tubule in Necturus kidney   总被引:1,自引:0,他引:1       下载免费PDF全文
The electrical properties of the proximal tubule of the in vivo Necturus kidney were investigated by injecting current (as rectangular waves) into the lumen or into the epithelium of single tubules and by studying the resulting changes of transepithelial (VL) and/or cell membrane potential (VC) at various distances from the source. In some experiments paired measurements of VL and VC were performed at two abscissas x and x'. The luminal length constant of about 1,030 micrometer was shown to provide a good estimate of the transepithelial resistance, specific resistance (RTE = 420 omega.cm2) and/or per unit length (rTE = 1.3 x 10(4) omega.cm). The apparent intraepithelial length constant was subject to distortions arising from concomitant current spread in the lumen. The resistances of luminal membrane (rL), basolateral membrane (rB), and shunt pathway (rS) were estimated by two independent methods at 3.5 x 10(4), 1.2 x 10(4), and 1.7 x 10(4) omega.cm, respectively. The corresponding specific resistances were close to 1,200, 600, and 600 omega.cm2. There are two main conclusions of this study. (a) The resistances of cell membranes and shunt pathway are of the same order of magnitude. The figure of the shunt resistance is at variance with the notion that the proximal tubule of Necturus is a leaky epithelium. (b) A rigorous assessment of the conductive properties of concentric cylindrical double cables (such as renal tubules) requires that electrical interactions arising from one cable to another be taken into account. Appropriate equations were developed to deal with this problem.  相似文献   

18.
19.
20.
Summary To assess the mechanism(s) by which intraluminal chloride concentration is raised above equilibrium values, intracellular Cl activity ( i Cl ) was studied in the proximal tubule ofNecturus kidney. Paired measurements of cell membrane PD (V BL) and Cl-selective electrode PD (V BL Cl ) were performed in single tubules, during reversible shifts of peritubular or luminal fluid composition. Steadystate i Cl was estimated at 14.6±0.6 mmol/liter, a figure substantially higher than that predicted for passive distribution. To determine the site of the uphill Cl transport into the cell, an inhibitor of anion transport (SITS) was added to the perfusion fluid. Introduction of SITS in peritubular perfusate decreased i Cl , whereas addition of the drug in luminal fluid slightly increased i Cl ; both results are consistent with basolateral membrane uphill Cl transport from interstitium to the cell. TMA+ for Na+ substitutions in either luminal or peritubular perfusate had no effect on i Cl . Removal of bicarbonate from peritubular fluid, at constant pH (a situation increasing HCO 3 outflux), resulted in an increase of i Cl , presumably related to enhanced Cl cell influx: we infer that Cl is exchanged against HCO 3 at the basolateral membrane. The following mechanism is suggested to account for the rise in luminal Cl concentration above equilibrium values: intracellular CO2 hydration gives rise to cell HCO 3 concentrations above equilibrium. The passive exit of HCO 3 at the basolateral membrane energizes an uphill entry of Cl into the cell. The resulting increase of i Cl , above equilibrium, generates downhill Cl diffusion from cell to lumen. As a result, luminal Cl concentration also increases.C.N.R.S. Greco 24. Part of this work was presented at the 12th annual meeting of the American Society of Nephrology, Boston, Mass. (Edelman et al., 1979).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号