首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cytoplasmic "petite" (rho-) clone of Saccharomyces cerevisiae has been isolated and found through DNA sequencing to contain the genes for cysteine, histidine, leucine, glutamine, lysine, arginine, and glycine tRNAs. This clone, designated DS502, has a tandemly repeated 3.5 kb segment of the wild type genome from 0.7 to 5.6 units. All the tRNA genes are transcribed from the same strand of DNA in the direction cap to oxil. The mitochondrial DNA segment of DS502 fills a sequence gap that existed between the histidine and lysine tRNAs. The new sequence data has made it possible to assign accurate map positions to all the tRNA genes in the cap-oxil span of the yeast mitochondrial genome. A detailed restriction map of the region from 0 to 17 map units along with the locations of 16 tRNA genes have been determined. The secondary structures of the leucine and glutamine tRNAs have been deduced from their gene sequences. The leucine tRNA exhibits 64% sequence homology to an E. coli leucine tRNA.  相似文献   

2.
The nucleoside composition of tRNA from highly purified yeast mitochondria shows the presence of T, ψ, hU, m1G, m2G, m22G, I and t6A whereas neither m7G, m5C, m3C, m1A, i6A and Y nor O′-methylated nucleosides (which are common in yeast cytoplasmic tRNA) were found. The G+C content is very low (35%). The overall methylation content is 2.7% which is about half the content of yeast cytoplasmic tRNA but similar to that of E. coli tRNA. Some rare nucleosides however which are found in E. coli (s4U, acp3U, m2A, m6A, ms2i6A, Q) were not found in yeast mitochondrial tRNA.  相似文献   

3.
Two cytoplasmic "petite" (rho-) clones of Saccharomyces cerevisiae have been selected for the retention of the aspartic acid tRNA gene. The two clones, designated DS200/A102 and DS200/A5, have tandemly repeated segments of mitochondrial DNA (mtDNA) with unit lengths of 1,000 and 6,400 base pairs, respectively. The DS200/A102 genome has a single tRNA gene with a 3'-CUG-5' anticodon capable of recognizing the 5'-GAC-3' and 5'-GAU-3' codons for aspartic acid. The mtDNA segment of DS200/A102 has been determined to represent the wild type sequence from 5.3 to 6.8 map units. The genome of DS200/A5 is more complex encompassing the region of wild type mtDNA from 3.5 to 12.7 units. A continuous sequence has been obtained from 3.5 to 8.6 units. In addition to the aspartic acid tRNA, this region codes for the tRNAUGCAla,tRNAUCUArg, tRNAACGArg, tRNAGCUSer,tRNAUCCGly and tRNAUUULys. The DNA sequence of the DS200/A5 genome has allowed us to deduce the secondary structures of the seven tRNAs and to assign precise map positions for their genes. All the tRNAs except tRNA GUCAsp exhibit most of the invariant features of prokaryotic and eukaryotic tRNAs. The aspartic acid tRNA has unusual D and T psi C loops. The structure of this tRNA is similar to the mitochondrial initiator tRNA of Neurospora crassa (Heckman, J.E., Hecker, L.I., Shwartzbach, S.D., Barnett, W.E., Baumstark, B., and RajBhandary, U.L. Cell 13, 83-95).  相似文献   

4.
5.
6.
7.
Two restriction enzyme fragments containing yeast mitochondrial tRNA genes have been characterized by DNA sequence analysis. One of these fragments is 320 base pairs long and contains a tRNA Ser gene. The corresponding tRNA SER was isolated from yeast mitochondria and its nucleotide sequence also was determined. This mitochondrial tRNA is 90 nucleotides in length, has a G + C content of 38%, and has UGA as the anticodon. A portion of a 680-base-pair DNA fragment containing a tRNA Phe gene was also sequenced. The portion of this gene which codes for the mature tRNA is 75 base pairs in length, has a G + C content of 33%, and contains the anticodon GAA. Neither gene contains an intervening sequence or codes for the 3' CCA terminus. Both are surrounded by regions of more than 90% A + T. The significance of these sequences is discussed.  相似文献   

8.
Nucleotide sequences of three cloned restriction fragments of Tetrahymena mtDNA which showed hybridization with mitochondrial tRNA have been determined. EcoRI fragment 5 (4.1 kbp) contains the tRNAphe gene sequence with anticodon GAA; Hind III fragment 6 (2.0 kbp) the tRNAhis with anticodon GTG; and EcoRI fragment 7 (1.9 kbp) the tRNAtrp with anticodon TCA. The CCA end is not encoded. All three tRNAs show usual features with common invariant and semi-invariant bases and can be folded into a cloverleaf structure with standard loops and regular base pairs in the stems. However, some minor irregular features are present including several GT pairs and an unmatched TT in the stems, and TCC instead of T psi C. All exhibit high G+C contents (about 50%); in contrast, the flanking regions are extremely A+T rich (about 80%). Several short coding frames can be deduced in these sequences, but their significance is not known.  相似文献   

9.
10.
11.
12.
Summary We have fractionated fragments of yeast mtDNA, obtained with restriction endonucleases, on poly(U)-Sephadex columns using the procedure of Flavell and Van den Berg (FEBS Letters (1975) 58, 90–93). The poly(U) forms a triple helix with (dA·dT) clusters in duplex DNA and fractionates DNA fragments on the basis of the length and number of clusters contained in them.mtDNA fragments obtained with endonucleases PstI, BamHI, HindII, HindII+III, EcoRI, HapII and HhaI were separated by poly(U)-Sephadex in three groups: fragments not retained by the column in 2M LiCl, fragments partially retained and fragments (nearly) completely bound in 2 M LiCl and only eluted by 0.1 M LiCl. The separation obtained is adequate for analytical fractionation of fragments and it can be used for the preparative isolation of firmly-bound fragments.In mtDNA digests made with endonuclease HapII, which gives about 70 separable fragments under our conditions, only about 10% of the fragments were firmly bound to poly(U)-Sephadex. This shows that the number of (dA·dT) clusters long enough to result in binding is limited in yeast mtDNA and its suggests that large fragments are bound by only one or a few clusters.Corresponding segments of the physical map of the mtDNAs from Saccharomyces carlsbergensis and Saccharomyces cerevisiae strains JS1-3D and KL14-4A were bound to the column, showing that the (dA·dT) clusters responsible for binding are conserved in the evolution of mtDNA. However, one 3,000 bp insert, only present on KL14-4A mtDNA, causes the loss of a binding site, another long insert introduces a new binding site.Fragments firmly bound to the columns are clustered in one quadrant of the physical map of these three mtDNAs. This quadrant also contains the large insertions present in KL14-4A mtDNA and absent from S. carlsbergensis mtDNA. The possible relation between (dA·dT) clusters and insertions is discussed.Abbreviation bp base pairs  相似文献   

13.
14.
Purified, isolated yeast tRNA Ser2 was used as a hybridization probe to estimate the number of tRNA Ser2 genes in the yeast genome. Molecular clones of several of the genes were obtained. Three examples were studied in detail with respect to their genomic organization, and DNA sequences were determined for them. There appear to be eleven tRNA Ser2 genes in the yeast genome. They are neither tandemly repeated, nor clustered with other tRNA genes. They contain no intervening sequences.  相似文献   

15.
16.
17.
18.
Summary We have physically mapped the loci conferring resistance to antibiotics that inhibit mitochondrial protein synthesis (erythromycin, chloramphenicol and paromomycin) or respiration (oligomycin I and II), as well as the 21s and 14s rRNA and tRNA genes on the restriction map of the mitochondrial genome of the yeast Saccharomyces cerevisiae. The mitochondrial genes were localized by hybridization of labeled RNA probes to restriction fragments of grande (strain MH41-7B) mitochondrial DNA (mtDNA)1 generated by endonucleases EcoRI, HpaI, BamHI, HindIII, SalI, PstI and HhaI. We have derived the HhaI restriction fragment map of MH41-7B mit DNA, to be added to our previously reported maps for the six other endonucleases.The antibiotic resistance loci (ant R) were mapped by hybridization of 3H-cRNA transcribed from single marker petite mtDNA's of low kinetic complexity to grande restriction fragments. We have chosen the single Sal I site as the origin of the circular physical map and have positioned the antibiotic loci as follows: C (99.5-1.Ou)-P(27-36.Ou)-OII (58.3-62u)-OI (80-84u)-E (94.4-98.4u). The 21s rRNA is localized at 94.4-99.2u, and the 14s rRNA is positioned between 36.2-39.8u. The two rRNA species are separated by 36% of the genome. Total mitochondrial tRNA labeled with 125I hybridized primarily to two regions of the genome, at 99.5-11.5u and 34-44u. A third region of hybridization was occasionally detected at 70-76u, which probably corresponds to seryl and glutamyl tRNA genes, previously located to this region by petite deletion mapping.Supported by USPHS Training Grant T32-GM-07197.Supported by USPHS Training Grant 5-T01-GM-0090-19.The Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U. S. Energy Research and Development Administration under Contract EY-76-C-02-0069.  相似文献   

19.
Whereas m1G, m2G, m22G, m7G, T, m1A, m5C and Cm methylase activities were found in total cell enzyme of Saccharomyces cerevisiae using under-methylated E. coli tRNA and E. coli B tRNA in reaction with or without Mg++, only m1G, m2G, m22G and T methylases occurred in mitochondria. Mitochondrial and cytoplasmic tRNA cannot be methylated by their homologous enzymes; only mitochondrial tRNA can be methylated in a heterologous reaction by total cell enzyme with formation of T, m5C, m1A and low amounts of m2G and m22G.  相似文献   

20.
Characterization of two types of yeast ribosomal DNA genes.   总被引:28,自引:5,他引:28       下载免费PDF全文
The intragenic organization of ribosomal DNA from a diploid strain of Saccharomyces cerevisiae was analyzed by using recombinant DNA molecules constructed in vitro. Restriction analysis of the yeast ribosomal DNA with the EcoRI restriction enzyme indicated that eight restriction fragments were present in the ribosomal DNA of this strain: X' (1.87 X 10(6) daltons), A (1.77 X 10(6) daltons), B (1.48 X 10(6) daltons), C (1.22 X 10(6) daltons), D (0.39 X 10(6) daltons), E (0.36 X 10(6) daltons), F (0.22 X 10(6) daltons), and G (0.17 X 10(6) daltons). These fragments were distributed between two different types of ribosomal DNA genes, which had the restriction maps: (formula: see text) in which the underlined region shows the repeating unit. The diploid yeast strain contained approximately equal amounts of each of these two types of genes. The analysis of the recombinant DNA molecules also indicated that the yeast ribosomal genes are homogeneous and extensively clustered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号