首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Glycosphingolipids of human plasma   总被引:2,自引:0,他引:2  
A number of glycosphingolipids, including 10 gangliosides, not previously identified in human plasma have been characterized. The plasma contains 2 micrograms of lipid-bound sialic acid/ml plasma and 54% of the gangliosides are monosialo, 30% disialo, 10% trisialo, and 6% tetrasialo. Individual glycosphingolipids were purified by high-performance liquid chromatography and thin-layer chromatography, and were characterized on the basis of their chromatographic mobility, carbohydrate composition, hydrolysis by glycosidases, methylation analysis, and immunostaining with anti-glycosphingolipid antibodies. The monosialogangliosides were identified as GM3, GM2, sialosyl(2-3)- and sialosyl(2-6)lactoneotetraosylceramides, sialosyllacto-N-nor-hexaosylceramide, and sialosyllacto-N-isooctaosylceramide. The major gangliosides in the polysialo fractions contained a ganglio-N-tetraose backbone and were identified as GD3, GD1a, GD1b, and GQ1b. The most abundant neutral glycosphingolipids were glucosyl, lactosyl, globotriaosyl, globotetraosyl and lactoneotetraosylceramides. The other neutral glycosphingolipids, tentatively identified by immunostaining with monoclonal antibodies, contained H1, Lea, Leb, and lacto-N-fucopentose III (X hapten) structures.  相似文献   

4.
目的 了解3种不同抗凝人血浆检测血浆凝固酶的可行性及观察时间对结果的影响.方法 用3种不同抗凝人血浆及以不同菌液浓度作试管法凝固酶试验.结果 EDTA-K2抗凝血浆出现阳性慢,凝块大多较小,24 h内稳定性较好;枸橼酸钠抗凝血浆出现结果介于EDTA-K2、肝素抗凝血浆之间,结果最不稳定;肝素抗凝血浆出现阳性最快,但不够稳定;菌液浓度对出现阳性的早晚无影响.结论 3种抗凝人血浆在试管法凝固酶测定中使用时,出现阳性快慢不受菌液浓度影响,随时间延长溶解现象可能会增加,应掌握结果观察时间,以降低假阴性.  相似文献   

5.
6.
Incubation of purified human plasma prekallikrein with sulfatides or dextran sulfate resulted in spontaneous activation of prekallikrein as judged by the appearance of amidolytic activity toward the chromogenic substrate H-D-Pro-Phe-Arg-p-nitroanilide. The time course of generation of amidolytic activity was sigmoidal with an apparent lag phase that was followed by a relatively rapid activation until finally a plateau was reached. Soybean trypsin inhibitor completely blocked prekallikrein activation whereas corn, lima bean, and ovomucoid trypsin inhibitors did not. The Ki of the reversible inhibitor benzamidine for autoactivation (240 microM) was identical to the Ki of benzamidine for kallikrein. Thus, spontaneous prekallikrein activation and kallikrein showed the same specificity for a number of serine protease inhibitors. This indicates that prekallikrein is activated by its own enzymatically active form, kallikrein. Immunoblotting analysis of the time course of activation showed that, concomitant with the appearance of amidolytic activity, prekallikrein was cleaved. However, prekallikrein was not quantitatively converted into two-chain kallikrein since other polypeptide products were visible on the gels. This accounts for the observation that in amidolytic assays not all prekallikrein present in the reaction mixture was measured as active kallikrein. Kinetic analysis showed that prekallikrein activation can be described by a second-order reaction mechanism in which prekallikrein is activated by kallikrein. The apparent second-order rate constant was 2.7 X 10(4) M-1 s-1 (pH 7.2, 50 microM sulfatides, ionic strength I = 0.06, at 37 degrees C). Autocatalytic prekallikrein activation was strongly dependent on the ionic strength, since there was a considerable decrease in the second-order rate constant of the reaction at high salt concentrations. In support of the autoactivation mechanism it was found that increasing the amount of kallikrein initially present in the reaction mixture resulted in a significant reduction of the lag period and a rapid completion of the reaction while the second-order rate constant was not influenced. Our data support a prekallikrein autoactivation mechanism in which surface-bound kallikrein activates surface-bound prekallikrein.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Modifications of existing methods have allowed for the isolation and purification of various species of plasma glycosaminoglycans on the basis of their sulfate content and molecular size. All of the preparations precipitated human plasma low density lipoproteins (LDL); maximal precipitation occurred with amounts of glycans corresponding to 50 mug of hexuronate and 12 mg of LDL. The interaction of glycans with pyrene-labeled lipoproteins was also studied, measuring variations of the fluorescence emitted by the monomer (M) and excimer (E) species of the bound pyrene. The ratio IE/IM is proportional to c/eta, where c is the microscopic concentration of the pyrene confined to the hydrocarbon region of the lipoprotein and eta is the microviscosity of that region. To 0.12 mg of pyrene-labeled LDL, very low density lipoproteins (VLDL) or high density lipoproteins (HDL) were added increasing amounts of the various glycan preparations. The sulfate-rich species decreased the IE/IM ratio of LDL and HDL but not that of VLDL. This finding suggests that the glycan caused a change in lipoprotein conformation associated with either an increased volume or increased microscopic viscosity of the hydrocarbon region. The modification of LDL conformation could be prevented by proteolytic treatment of the sulfate-rich species or by addition to the system of suitable amounts of sulfate-poor species or of chrondroitin-4-sulfate, but could not be prevented by increased ionic concentration. These results suggest that the two main species of plasma glycans are important in maintaining adequate rheological properties of plasma lipoproteins.  相似文献   

14.
Analytical methods based on light microscopy, 90° light-scattering and surface plasmon resonance (SPR) allowed the characterization of aggregation that can occur when antibodies are mixed with human plasma. Light microscopy showed that aggregates formed when human plasma was mixed with 5% dextrose solutions of Herceptin® (trastuzumab) or Avastin® (bevacizumab) but not Remicade® (infliximab). The aggregates in the plasma-Herceptin®-5% dextrose solution were globular, size range 0.5–9 μm, with a mean diameter of 4 μm. The aggregates in the plasma-Avastin®-5% dextrose samples had a mean size of 2 μm. No aggregation was observed when 0.9% NaCl solutions of Herceptin®, Avastin® and Remicade® were mixed with human plasma. 90° light-scattering measurements showed that aggregates were still present 2.5 h after mixing Herceptin® or Avastin® with 5% dextrose-plasma solution. A SPR method was utilized to qualitatively describe the extent of interactions of surface-bound antibodies with undiluted human serum. Increased binding was observed in the case of Erbitux® (cetuximab), whereas no binding was measured for Humira® (adalimumab). The binding of sera components to 13 monoclonal antibodies was measured and correlated with known serum binding properties of the antibodies. The data presented in this paper provide analytical methods to study the intrinsic and buffer-dependent aggregation tendencies of therapeutic proteins when mixed with human plasma and serum.  相似文献   

15.
Characterization of human megakaryocytic colony formation in human plasma   总被引:4,自引:0,他引:4  
We have analysed the contribution to megakaryocyte colony formation in methylcellulose made by human plasma, serum, media conditioned by phytohemagglutinin (PHA) stimulated leukocytes (PHA-LCM), erythropoietin (EPO) preparations, and platelets. The culture system was used as a bioassay for megakaryocyte colony stimulating activity (Meg-CSA) in plasma samples of patients with perturbed megakaryocytopoiesis. Preparations of heparinized platelet-poor plasma yielded the most consistent results. Platelet-poor plasma of normal subjects will at best facilitate the occasional growth of small megakaryocyte colonies. Colony frequency and size are reproducibly enhanced in the presence of PHA-LCM as a source of exogenous Meg-CSA. Commercially available EPO preparations may vary in their content of activities that influence megakaryocyte colony formation. Addition of these preparations to cultures that contain plasma and PHA-LCM usually does not enhance colony formation. In contrast to platelet-poor plasma, platelet rich plasma and serum are less supportive of megakaryocyte colony growth. It is suggested that this loss of activity may be related to the release of inhibitors by activated platelets or alternatively caused by absorption of activities by platelets. Plasma samples from patients with megakaryocytopoietic dysfunction may contain components that promote colony formation without addition of PHA-LCM or EPO. This phenomenon is consistently observed for patients with severe aplastic anemia and bone marrow transplant recipients after completion of their ablative preparative regimen.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号