共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane preparations of high purity were obtained from roots of dark-grown wheat (Triticum aestivum L. cv. Drabant) by aqueous polymer two-phase partitioning. These preparations mainly contained sealed, right-side-out vesicles (ca 90% exposing the original outside out). By subjecting the preparations to 4 freeze/thaw cycles the proportion of sealed, inside-out (cytoplasmic side out) vesicles increased to ca 30%. Inside-out and right-side-out plasma membrane vesicles were then separated by partitioning the freeze/thawed plasma membranes in another aqueous polymer two-phase system. In this way, highly purified, sealed, inside-out (>60% inside-out) vesicles were isolated and subsequently used for characterization of the Ca2+ transport system in the wheat plasma membrane. The capacity for 45Ca2+ accumulation, nonlatent ATPase activity and proton pumping (the latter two markers for inside-out plasma membrane vesicles) were all enriched in the inside-out vesicle fraction as compared to the right-side-out fraction. This confirms that the ATP-binding site of the 45Ca2+ transport system, similar to the H+-ATPase, is located on the inner cytoplasmic surface of the plant plasma membrane. The 45Ca2+ uptake was MgATP-dependent with an apparent Km for ATP of 0.1 mM and a high affinity for Ca2+ [Km(Ca2+/EGTA) = 3 μM]. The pH optimum was at 7.4–7.8. ATP was the preferred nucleotide substrate with ITP and GTP giving activities of 30–40% of the 45Ca2+ uptake seen with ATP. The 45Ca2+ uptake was stimulated by monovalent cations; K? and Na+ being equally efficient. Vanadate inhibited the 45Ca2+ accumulation with half-maximal inhibitions at 72, 57 and 2 μM for basal, total (with KCI) and net K+-stimulated uptake, respectively. The system was also highly sensitive to erythrosin B with half-maximal inhibition at 25 nM and total inhibition at 1μM. Our results demonstrate the presence of a primary Ca2+ transport ATPase in the plasma membrane of wheat roots. The enzyme is likely to be involved in mediating active efflux (ATP-binding sites on the cytoplasmic side) to the plant cell exterior to maintain resting levels of cytoplasmic free Ca2+ within the cell. 相似文献
2.
3.
The red light (R)-induced swelling of mesophyll protoplasts, isolated from dark-grown wheat ( Triticum aestivum L. cv. Arminda) leaves, was inhibited by guanosine-5'-0-(2-thiodiphosphate) (GDP-β-S). In darkness or after control irradiation with far-red light (FR), guanosine-5'-O-(3-thiotriphosphate) (GTP-γ-S) induced swelling to the same extent as after R. Both GDP-β-S and GTP-γ-S were introduced into the cytoplasm by means of electroporation. The possibility of R-induced activation of the phosphatidylinositol pathway of transmembrane signalling was investigated. Neomycin, Li+ and l-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7 ) inhibited the R-induced swelling. Phorbol 12-myristate 13-acetate (PMA) induced swelling after control irradiation with FR. Neomycin and Li+ also inhibited GTP-γ-S-induced swelling. These results suggest that a GTP-binding protein is involved in the phytochrome-regulated swelling response. Addition of N6 , 2'-0-dibutyryladenosine 3':5'-cyclic monophosphate (DB-cAMP) induced swelling to the same extent as R-irradiation. The calmodulin antagonist N-(6-aminohexyl)5-chloro-l-naphthalenesulfonamide (W7 ) induced swelling after FR, while R-induced swelling was not affected. The less active analogue N-(6-aminohexyl)-l-naphthalenesulfonamide (W5 ) induced no swelling after FR. It is speculated that the protoplast volume is correlated with the cytoplasmic concentration of free Ca2+ . 相似文献
4.
Martin G. Klotz Alajos Bérczi László Erdei Bernd Liebermann 《Physiologia plantarum》1989,75(3):405-410
Purified plasmalemma vesicles were isolated in the presence of 250 m M sucrose from roots of 14-day-old seedlings of winter wheat ( Triticum aestivum L. Martonvásári-8) by phase partitioning of salt-washed microsomal fractions in a Dextran-polyethylene glycol two-phase system, and both Mg2+ - and Ca2+ -ATPase activities were detected. Orthovanadate-sensitive Mg2+ -ATPase activity associated with the inside of right side-out plasmalemma (PM) vesicles (latency 98%) was inhibited 76% by 0.3 m M Ca2+ , Ca2+ -dependent ATPase activity located partly on the inside and partly on the outside of plasmalemma vesicles (latency 47%) was not affected by Mg2+ .
Mg2+ -ATPase activity was inhibited by 68% and inhibition of Mg2+ activation by 0.3 m M Ca2+ partly disappeared in the presence of 10 p M tentoxin, a fungal phytotoxin. Mg2+ -ATPase activity remained inhibited up to 10 n M tentoxin while at 1 μ M tentoxin Mg2+ activation was as high as without tentoxin. K+ -stimulation and vanadate inhibition was increased and decreased, respectively, by 100 p M -10 n M tentoxin. Ca2+ -dependent ATPase activity was continuously increased by 1 p M -10 n M tentoxin, but at 1 μ M tentoxin the stimulation disappeared. The effects of p M tentoxin on plasma-lemma Mg2+ -ATPase are discussed in relation to its influence on K+ transport in wheat seedlings. 相似文献
Mg
5.
Plant cells frequently and rapidly have to respond to environmental changes for survival. Regulation of transport and other energy-requiring processes in the plasmalemma of root cells is therefore one important aspect of the ecological adaptation of plants. Wheat (Triticum aestivum L. cv. Drabant) was grown hydroponically, with or without 50 nM benzyladenine in the medium, and plasma membranes from root cells of 8-day-old plants were prepared by aqueous polymer two-phase partitioning. The influence of Ca2+ and Mg2+ on the plasmalemma ATPase activities was investigated. The presence of benzyladenine during growth increased the ATPase activity, that dependent upon Ca2+ more than that elicited by Mg2+. As a general characteristic, ATP was the preferred substrate, but all nucleotide tri- and diphosphates could be accepted with activities in plasma membranes from control plants of 7-36% (Mg2+) and 40-86% (Ca2+) and in plasma membranes from benzyladenine-treated plants of 12-47% (Mg2+) and 53-102% (Ca2+) as compared with activities obtained with ATP. Nucleotidemonophosphates were not hydrolyzed by the preparations. In preparations from benzyladenine-treated plants one peak of Ca2+-ATPase at pH 5.2–5.6, with a tail from pH 6 and upwards, and one peak of Mg2+-ATPase at pH 6.0–6.5 were observed in the presence of EDTA in the assay media. In preparations from control plants, the addition of EDTA to the assays resulted in a wide optimum between pH 6 and 7 for Mg2+-ATPase and low Ca2+-ATPase activity with no influence of pH in the range 4.5 to 8. Analysis of the pH dependence in the presence of both Ca2+ and Mg2+ indicates that the control plants mainly contain Mg2+-ATPase corresponding to the proton pump. Preparations from benzyladenine-treated wheat roots show, in addition, activation by Ca2+, which, in the slightly alkaline pH range may correspond to a Ca2+-extruding (Ca2++ Mg2+)-ATPase. In the acidic range, the responses are more complicated: the Mg2+-ATPase is inhibited by vanadate, while the Ca2+-ATPase is insensitive, and benzyladenine added during growth influences the interaction between Ca2+ and Mg2+ in a way that parallels the effect of high salt medium. 相似文献
6.
7.
Influx of Rb+(86Rb+) and Ca2+(45Ca2+) was determined in roots of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) after 14 days at 16°C/16 h light, after 1 and 8 weeks of cold acclimation (2°C/8 h light) and at intervals after deacclimation (16°C/16 h light) for up to 14 days. The plants were cultivated at 3 ionic strengths: 100, 10 and 1% of a full strength nutrient solution, containing 3.0 mM K+ and 1.0 mM Ca2+. K+ concentrations in roots and shoots increased during cold treatment, while Ca2+ in the roots decreased. In the shoots Ca2+ concentrations remained the same. Influx of Rb+ as a function of average K+ concentration in the roots of 14-day-old, non-cold-treated plants was high at a certain K+ level in the root and decreased at higher root K+ levels (negative feedback). The pattern for Ca2+ influx versus average concentration of Ca2+ in the root was the reverse. Independent of duration of treatment (1–8 weeks), cold acclimation partly changed the regulation of Rb+ influx, so that it became less dependent upon negative feedback and more dependent on the ionic strength of the cultivation solution. After exposure to 2°C, Ca2+ influx increased at high Ca2+ concentrations in the root as compared with influx in roots of 14-day-old non-cold-treated plants. Under deacclimation, Ca2+ influx gradually decreased again, and reached the level observed before cold treatment within 7–14 days at 16°C; the number of days depending on the exposure time at 2°C. It is suggested that Rb+(K+) influx became adjusted to low temperature and that abscisic acid (ABA) may be involved in this mechanism. It is also suggested that extrusion of Ca2+ was impaired and/or Ca2+ channels were activated at 2°C in roots of plants grown in the full-strength solution and that extrusion was gradually restored and/or Ca2+ channels were closed under deacclimation conditions. 相似文献
8.
Bengt Bengtsson 《Physiologia plantarum》1982,56(4):415-420
Betula papyrifera Marsh, seedlings adapted very poorly to flooding for up to 60 days. Responses to flooding included increased ethylene production; stomatal closure; leaf senescence; drastic inhibition of shoot growth, cambial growth, and root growth; decay of roots, and death of many seedlings. Flooding inhibited growth of leaves that formed prior to flooding, inhibited formation of new leaves, and induced abscission of old leaves. As a result of extensive leaf abscission, fewer leaves were present after flooding than before flooding was initiated. The drastic reduction in leaf area was associated with greatly decreased growth of the lower stem and roots. No evidence was found of adaptive morphological changes to flooding. The data indicate that intolerance of B. papyrifera seedlings to flooding is an important barrier to regeneration of the species on sites subject to periodic inundation. 相似文献
9.
A 40000 g supernatant fraction from extracts of germinating wheat ( Triticum turgidum Desf. cv. Edmore) endosperm contains protein kinase activity that phosphorylates several endogenous proteins. In vitro incorporation of radiolabel from [32 P]-ATP into phosphoproteins was maximal in the presence of 1 m M CaCl2 and 5 m M MgCl2 Ca2+ at micromolar concentrations greatly stimulated the phosphorylation of 49 and 47 kDa polypeptides and also inhibited the phosphorylation of a few specific polypeptides. The phosphorylation of the 49 and 47 kDa polypeptides was present at 2 days after seed germination and was maximal at 8 days. Quantitative protein changes were also detected during the seed germination, but differences could not be correlated with changes in protein phosphorylation. Phosphoamino acid analysis by two dimensional thin-layer electrophoresis showed that the Ca2+ -dependent protein kinase phosphorylates a serine residue of the 47 kDa polypeptide. Ca2+ -dependent protein kinase phosphorylates a serine residue of the 47 KDa polypeptide. Ca2+ dependent protein phosphorylktion was inhibited by phenothiazine-derived drugs. Addition of S-adenosylmethionine to the in vitro phosphorylation reaction specifically inhibited the Ca2+ -dependent protein phosphorylation. 相似文献
10.
The plasma membrane was isolated from a calcareous red alga, Serraticardia maxima (Yendo) Silva (Corallinaceae), by aqueous two-phase partitioning. Its purity was examined with marker enzymes, Mg2+-dependent ATPase, inosine diphosphatase, cytochrome c oxidase and NADH-cytochrome c reductase, as well as the sensitivity of Mg2+-dependent ATPase to vanadate, azide and nitrate. The results showed that the isolated plasma membrane was purified enough to study its functions. Electron microscopic observations on thin tissue sections revealed that most vesicles of the isolated plasma membrane were stained by the plasma membrane specific stain, phosphotungstic acid-chromic acid. Mg2+- or Ca2+-dependent ATPases were associated with the plasma membrane. Ca2+-dependent ATPase was activated at physiological cytoplasmic concentrations of Ca2+ (0.1–10 μmol/L). However, calmodulin (0.5 μmol/L) did not affect its activity. The pH optimum was 8.0, in contrast to 7.0 for Mg2+-dependent ATPase. The isolated plasma membrane vesicles were mostly right side-out. To test for H+-translocation, right side-out vesicles were inverted; 27% of vesicles were inside-out after treatment with Triton X-100. The inside-out plasma membrane vesicles showed reduction of quinacrine fluorescence in the presence of 1 mmol/L ATP and 100 μmol/L Ca2+. The reduced fluorescence was recovered with the addition of 10 mmol/L NH4Cl, or 5 μmol/L nigericin plus 50 mmol/L KCl. UTP and CTP substituted for ATP, but ADP did not. Ca2+-dependent ATPase might pump H+ out in the physiological state. The acidification by this pump might be coupled with alkalinization at the calcifying sites, which induces calcification. 相似文献
11.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+. 相似文献
12.
A. I. MALIK T. D. COLMER H. LAMBERS & M. SCHORTEMEYER 《Plant, cell & environment》2003,26(10):1713-1722
This study investigated aerenchyma formation and function in adventitious roots of wheat (Triticum aestivum L.) when only a part of the root system was exposed to O2 deficiency. Two experimental systems were used: (1) plants in soil waterlogged at 200 mm below the surface; or (2) a nutrient solution system with only the apical region of a single root exposed to deoxygenated stagnant agar solution with the remainder of the root system in aerated nutrient solution. Porosity increased two‐ to three‐fold along the entire length of the adventitious roots that grew into the water‐saturated zone 200 mm below the soil surface, and also increased in roots that grew in the aerobic soil above the water‐saturated zone. Likewise, adventitious roots with only the tips growing into deoxygenated stagnant agar solution developed aerenchyma along the entire main axis. Measurements of radial O2 loss (ROL), taken using root‐sleeving O2 electrodes, showed this aerenchyma was functional in conducting O2. The ROL measured near tips of intact roots in deoxygenated stagnant agar solution, while the basal part of the root remained in aerated solution, was sustained when the atmosphere around the shoot was replaced by N2. This illustrates the importance of O2 diffusion into the basal regions of roots within an aerobic zone, and the subsequent longitudinal movement of O2 within the aerenchyma, to supply O2 to the tip growing in an O2 deficient zone. 相似文献
13.
14.
Influx of Rb+(86Rb+) and Ca2+ (45Ca2+) in roots of intact winter wheat (Triticum aestivum L. cv. Weibulls Starke II) was determined at intervals before, during and after exposure to cold acclimation conditions (2°C and 8 h light period). The plants were grown in nutrient medium of two ionic strengths. During the initial two weeks of growth at 16°C and 16 h light period, Rb+ influx into roots decreased with increasing age, probably as a consequence of a decreasing proportion of metabolically active roots. The presence of 10?4M 2,4-dinitrophenol (DNP) reduced Rb+ influx to a low and constant level, indicating that metabolic influx was the dominant process. In contrast, Ca2+ influx in plants grown in full strength nutrient solution was higher in the presence than in the absence of DNP. This effect may have been due to an active extrusion mechanism mediating re-export of absorbed Ca2+(45Ca2+) during the uptake experiment. With the metabolic uncoupler inhibiting such extrusion the Ca2+(45Ca2+) influx mesured would increase. During cold treatment, Rb+ influx remained at a low level, and was further decreased when DNP was present in the uptake solution. This effect may have been due to inhibition of residual active influx of Rb+ at 2°C by the uncoupler and/or to a decrease in membrane permeability. In contrast to Rb+, Ca2+ influx increased during cold treatment, which could again be explained as inhibition of re-export. The presence of DNP reduced Ca2+ influx at 2°C, indicating decreased membrane permeability by DNP at low temperature. After transfer of plants from cold acclimation conditions to 16°C, Rb+ and Ca2+ influx increased in plants grown at both ionic strengths. Influx levels were independent of the length of the cold acclimation period (1, 6 and 8 weeks), but the patterns were different for the two ions. After each of the cold acclimation periods, Rb+ influx increased during the first week and decreased or remained at the same level during the second week, while Ca2+ influx always decreased during the second week of post-cold treatment. 相似文献
15.
The effects of cadmium and lead on the internal concentrations of Ca2+ and K+, as well as on the uptake and translocation of K(86Rb+) were studied in winter wheat (Triticum aestivum L. a. MV-8) grown hydroponically at 2 levels of K+ (100 uM and 10 mM). Cd2+ and Pb2+ were applied in the nutrient solution in the range of 0.3 to 1000 u.M. Growth was more severely inhibited by Cd2+ and in the high-K+ plants as compared to Pbz+ and low-K+ plants. Ions of both heavy metals accumulated in the roots and shoots, but the K+ status influenced their levels. Ca2+ accumulation was increased by low concentrations of Cd2+ mainly in low-K+ shoots, whereas it was less influenced by Pb2+. The distribution of Cd2+ and Ca2+ in the plant and in the growth media indicated high selectivity for Cd2+ in the root uptake, while Ca2+ was preferred in the radial and/or xylem transport. Cd2+ strongly inhibited net K+ accumulation in high-K+ plants but caused stimulation at low K+ supply. In contrast, the metabolis-dependent influx of K+(86Rb+) was inhibited in low-K+ plants, while the passive influx in high-K+ plants was stimulated. Translocation of K+ from the roots to the shoots was inhibited by Cd2+ but less influenced in Pb2+-treated plants. It is concluded that the effects of heavy metals depend upon the K+-status of the plants. 相似文献
16.
Ice crystal formation temperature was determined in the region of the crown in one group of 7-day-old intact unhardened high-salt plants of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) with TA (Thermal Analysis) and DTA (Differential Thermal Analysis) methods. After exposure of another group of plants, grown for the first 7 days in the same way as the first group, to various sub-zero temperatures (-1 to 5°C), influx in roots of Rb+(86Rb+) and Ca2+(45Ca2+) and contents of K+ and Ca2+ were determined at intervals during 7 days of recovery. Ice crystal formation in the crown tissue was probably extracellular and took place at about -4°C. There was a large loss of K+ from the roots after treatment at sub-zero temperatures. This loss increased as the temperature of the sub-zero treatment decreased. During recovery, roots of plants exposed to -1, -2 and -3°C gradually reabsorbed K+. Reabsorption of K+ in roots of plants exposed to -4°C was greatly impaired. Rb+ influx decreased and Ca2+ influx increased after sub-zero temperature treatments of the plants. Active Rb+ influx mechanisms and active extrusion of Ca2+ were impaired or irreversibly damaged by the exposure. While Rb+ influx mechanisms were apparently repaired during recovery in plants exposed to temperatures down to -3°C, Ca2+ extrusion mechanisms were not. The temperature for ice crystal formation in the region of the crown tissue coincides with the temperature at which the plants lost the ability to reabsorb K+ and to repair Rb+ influx mechanisms during the recovery period. Plants were lethally damaged at temperatures below ?4°C. 相似文献
17.
Klotz, M. G. and Erdei, L. 1988. Effect of tentoxin on K+ transport in winter wheat seedlings of different K+-status. The influence of the phytoeffective mycotoxin, tentoxin, [cyclo-(L-leucyl-N-methyltrans-dehydronhenyl-alanyl-glycyl-N-methyl-L-alanyl)] (in K+ uptake and on translocation of K+ from roots to shoot was studied in 14-day-old winter wheat plants (Triticum aestivum L. cv. Martonvásári-8) grown at different levels of K+ supply. For comparison, the effects of 2,4-dinilrophcnol and valinomycin were also investigated. In I-h experiments I pM tentoxin reduced K+ influx in the routs over the external K+ concentration range 0.1 to 1 mM (low-K+ plants), whereas stimulation was observed al lower and higher K+ concentrations. On the other hand, in plants grown at 0.3 mM K+, tentoxin stimulated the translocation of K+ from roots to shoots in 5-h experiments. Valinomycin affected K+ transport only al high K+-status (slight stimulation). In low-K+ plants 2,4-dinitrophenol (DNP) caused drastic inhibition of K+ uptake, but in high-K+ plants uptake was only slightly inhibited and translocation slightly stimulated, It is concluded that the opposite effects of tentoxin on K+ uptake and translocation agree1 with the directions of the H+-ATPases pumping H+ towards the apoplast and located at the cortex plasmalemma and the xylem parenchyma plasma-membrane, respectively. These effects should probably be attributed to the interaction between tentoxin and the K+-carrier protein rather than to a direct influence of tentoxin on H+-ATPase. 相似文献
18.
19.
Paul Jensén 《Physiologia plantarum》1982,56(3):259-265
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx. 相似文献
20.
We have estimated the amount of inside-out plasma membrane (PM) vesicles in microsomal fractions from wheat (Triticum aestivum L. cv. Drabant) and maize (Zea mays L.) roots; non-latent activities of the PM markers vanadate-inhibited K+, Mg2+-ATPase (ΔVO4-ATPase) and glucan synthase II (GS II, EC 2.4.1.34) were used as markers for inside-out PM vesicles, latent activities as markers for right-side-out PM vesicles, and specific staining with silicotungstic acid (STA) as a general marker for the PM. Separation of presumptive inside-out PM vesicles from right-side-out ones was achieved by counter-current-distribution (CCD) in an aqueous polymer two-phase system. Most of the GS II activity was latent and was found in material partitioning into the upper phase; a distribution which correlated well with that of STA-stained vesicles. Thus, most of the PM vesicles had a right-side-out orientation. ΔVO4-ATPase, on the other hand, had a dual distribution (particularly pronounced in wheat) and was recovered both in material partitioning into the lower phase and into the upper phase. This indicates that ΔVO4-ATPase activity was present also in membranes other than the PM. Additional evidence for this interpretation came from sucrose gradient centrifugation of wheat root material. This produced two peaks of ΔVO4-ATPase activity with the membranes partitioning into the lower phase, none of which coincided with the peak obtained with right-side-out PM vesicles. Taken together, these results indicate that only very few inside-out PM vesicles are present in the microsomal fraction, and that ΔVO4-ATPase as a marker for the PM, in contrast to GS II, may give quite misleading results with some plant materials. This stresses the need to use well-defined preparations of scaled, inside-out PM vesicles in solute uptake studies. The distribution of Ca2+-inhibited ATPase, on the other hand, agreed well with those of GS II and STA-stained vesicles both after CCD and sucrose gradient centrifugation, which suggests that Ca2+ inhibition may be a more specific property of the PM H+-ATPase than vanadate inhibition. 相似文献