首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dispersed marmoset luteal cells were incubated for 2 h and progesterone production measured after exposure to hCG, cloprostenol, dibutyryl cAMP, PGF-2 alpha, PGF-2, adrenaline or melatonin. The cells were studied on Days 6, 14 and 20 after ovulation in conception and non-conception cycles. Luteal cells from Day 14 non-pregnant marmosets were compared with human luteal cells taken in the mid-luteal phase. All the treatments stimulated progesterone production including cloprostenol, which is luteolytic when administered to the marmoset in vivo, but the degree of response varied with the stage of the cycle or pregnancy and between marmoset and human luteal cells. In the marmoset, overall analysis of the effect of the treatments showed that, on Day 6 after ovulation, there was no significant effect of any of the treatments in cells from pregnant or non-pregnant animals. In contrast, luteal cells from non-pregnant animals on Day 14 showed a significant response to the treatments (F (8,41) = 2.79, P less than 0.0145) whereas cells from pregnant Day-14 animals were responsive; in cells from pregnant animals, the control production of progesterone was high and already equivalent to the levels stimulated by the treatments. By Day 20, cells from pregnant animals produced lower control concentrations of progesterone than did those on Day 14 and there was a significant overall effect of the treatments (F (8,33) = 3.78, P less than 0.003). These results show that the marmoset CL gains responsiveness to treatment between Days 6 and 14 after ovulation in the non-pregnant cycle. In pregnancy, on Day 14, 2 days after attachment of the embryo, the high control concentrations of progesterone and absence of response to treatment suggest that an embryo message may have affected the CL, providing an endogenous stimulus.  相似文献   

2.
Four experiments were conducted (with crossbred beef heifers) to determine the effects of dose and route of administration of cloprostenol on luteolysis, estrus and ovulation. In Experiment 1, 19 heifers with a CL > or = 17 mm in diameter were randomly allocated to receive cloprostenol as follows: 100 microg s.c., 250 microg s.c., or 500 microg i.m. Heifers given 100 microg s.c. had a longer (P<0.03) interval (120.0 h+/-10.7 h; mean+/-S.E.M.) from treatment to ovulation than those given either 250 microg s.c. or 500 microg i.m. (92.0 h+/-7.4 h and 84.0 h+/-8.2 h, respectively). In Experiment 2, 28 heifers were given porcine LH (pLH), followed in 7 days by cloprostenol (same doses and routes as in Experiment 1), and a second dose of pLH 48 h after cloprostenol. Luteolysis occurred in all heifers, and no difference was detected among treatment groups in the interval from cloprostenol treatment to ovulation (mean, 101 h; P<0.9). In Experiment 3, 38 heifers at random stages of the estrous cycle (but with plasma progesterone concentrations > or =1.0 ng/ml) received 500 or 125 microg cloprostenol by either i.m. or s.c. injection (2/2 factorial design). There was no difference (P<0.4) among groups in the proportions of heifers that were detected in estrus or that ovulated. However, the interval from cloprostenol treatment to estrus was shorter (P<0.02) in the group that received 500 microg i.m. (58.5h) than in the other three groups (500 microg s.c., 75.0 h; 125 microg i.m., 78.0 h; and 125 microg s.c., 82.3h). In Experiment 4, 36 heifers were treated (as in Experiment 3) on Day 7 after ovulation. The proportions of heifers detected in estrus and ovulating after 125 microg s.c. (33 and 44%, respectively) or 125 microg i.m. (55 and 55%) were lower (P<0.05) than in those that received 500 microg s.c. (100 and 100%), but not different from those receiving 500 microg i.m. (78 and 89%, respectively). Overall, ovulation was detected in 9/18 heifers given 125 microg and 17/18 heifers given 500 microg of cloprostenol, on Day 7 (P<0.01) and was detected in 17/20 heifers given 125 microg and 18/18 heifers given 500 microg of cloprostenol, at random stages of the estrous cycle (P>0.05). Although there was no significant difference in luteolytic efficacy between i.m. and s.c. injections of the recommended dose (500 microg) of cloprostenol, variability in responsiveness to a reduced dose depended upon CL sensitivity, therefore, reduced doses cannot be recommended for routine use.  相似文献   

3.
This study examines differences in intracellular responses to cloprostenol, a prostaglandin (PG)F(2alpha) analog, in porcine corpora lutea (CL) before (Day 9 of estrous cycle) and after (Day 17 of pseudopregnancy) acquisition of luteolytic capacity. Pigs on Day 9 or Day 17 were treated with saline or 500 microgram cloprostenol, and CL were collected 10 h (experiment I) or 0.5 h (experiment III) after treatment. Some CL were cut into small pieces and cultured to measure progesterone and PGF(2alpha) secretion. In experiment I, progesterone remained high and PGF(2alpha) low in luteal incubations from either Day 9 or Day 17 saline-treated pigs. Cloprostenol increased PGF(2alpha) production 465% and decreased progesterone production 87% only from Day 17 luteal tissue. Cloprostenol induced prostaglandin G/H synthase (PGHS)-2 mRNA (0.5 h) and protein (10 h) in both groups. In cell culture, cloprostenol or phorbol 12, 13-didecanoate (PDD) (protein kinase C activator), induced PGHS-2 mRNA in luteal cells from both groups. However, acute cloprostenol treatment (10 min) decreased progesterone production and increased PGF(2alpha) production only from Day 17 luteal cells. Thus, PGF(2alpha) production is induced by cloprostenol in porcine CL with luteolytic capacity (Day 17) but not in CL without luteolytic capacity (Day 9). However, this change in PGF(2alpha) production is not explained by a difference in induction of PGHS-2 mRNA or protein.  相似文献   

4.
The temporal relationships between blood flow in the corpus luteum (CL) and circulating progesterone concentrations were studied in 20 mares. Retrospective inspection of plasma progesterone concentrations indicated that a precipitous decrease occurred during Days 15-17 (Day 0 = ovulation) and was defined as the luteolytic period. Mean percentage of CL with color-Doppler signals for blood flow was maximum on Day 10 (77.3%), and Days 10-14 (49.8%) were defined as the preluteolytic period. The cross-sectional area of the CL decreased progressively from Day 4 (9.0 cm2) to Day 19 (1.5 cm2). Progesterone reached maximum concentration on Day 8 (12.8 ng/ml) and thereafter CL area and plasma progesterone decreased in parallel until the onset of luteolysis. During the luteolytic period, the decrease in plasma progesterone was about sixfold greater than during the preluteolytic period, whereas the decrease in CL area and in percentage of CL with blood-flow area were about twofold greater. There was no indication that an acute increase or decrease in luteal blood flow occurred prior to the precipitous decrease in plasma progesterone.  相似文献   

5.
The microsphere technique was used to obtain estimates of ovarian capillary blood flow near ovulation, in 8 seasonally anoestrous ewes, which were induced to ovulate by GnRH therapy. Plasma progesterone concentrations were monitored in jugular blood sampled between Days 4 and 7 after the onset of the preovulatory LH surge. The ewes were then slaughtered. Three of the ewes were treated with a single injection of 20 mg progesterone before GnRH therapy. In these ewes and 1 other, plasma progesterone values increased after ovulation and reached 1.0 ng/ml on Day 7 following the preovulatory LH surge (normal, functional CL), whilst in the other 4 ewes progesterone concentrations increased initially then declined to 0.5 ng/ml by Day 7 (abnormal CL). In the ewes exhibiting normal luteal function, the mean ovarian capillary blood flow was significantly greater (P less than 0.01) than that for ewes having abnormal luteal function. Irrespective of the type of CL produced, capillary blood flow was significantly greater (P less than 0.05) in ovulatory ovaries than in non-ovulatory ovaries. These findings indicate that the rate of capillary blood flow in ovaries near ovulation may be a critical factor in normal development and maturation of preovulatory follicles and function of subsequently formed CL.  相似文献   

6.
The use of exogenous progestagens for estrus synchronization in cattle can result in a persistent dominant follicle which is associated with reduced fertility. We examined whether the LHRH agonist, deslorelin, would prevent the formation of a persistent follicle in heifers synchronized with norgestomet. The estrous cycles of heifers were synchronized with cloprostenol, and on Day 7 of the ensuing cycle the heifers received one of the following treatments for 10 d: Group C (n = 5), untreated control; Group N (n = 6), injection of a luteolytic dose of cloprostenol on Days 7 and 8 and implant of norgestomet from Day 7 to Day 17 (i.e. typical 10-day norgestomet implant period); Group D (n = 6), injection of cloprostenol on Days 7 and 8 and implants of deslorelin from Day 7 to Day 17; Group ND (n = 6), injections of cloprostenol and both norgestomet and deslorelin implants as above. Follicle growth was monitored using ultrasonography. Group-N heifers showed continued follicle growth and had larger follicles on Day 17 of the cycle than Group-C heifers (16.8 +/- 1.6 and 10.4 +/- 1.6 mm). Follicle growth for Group-D and ND heifers was similar and variable, and seemed to depend on follicle status at the initiation of treatment. Heifers with follicles of 5 to 10 mm (n = 9) in diameter either showed no follicle growth (2 9 ) or developed large follicles (7 9 ), while heifers with follicles approximately 12 mm (n = 3) in diameter showed follicle atresia with no further significant growth. On Day 17, size of the largest follicle was similar for Group-ND (14.3 +/- 2.9) and Group-D (16.8 +/- 1.6) heifers. Heifers in Group N showed estrous behavior 1.8 +/- 0.2 d after treatment, whereas heifers in Groups D and ND did not show estrus for 2 to 4 wk. The results show that combined treatment with progestagen and an LHRH agonist does not consistently prevent the development of a persistent dominant follicle and that return to estrus can be delayed after treatment with an LHRH agonist.  相似文献   

7.
Holstein heifers used as embryo donors were treated with three luteolytic agents (PGF2alpha, cloprostenol, fenprostalene) during the normal estrous cycle, superovulation or after embryo collection to determine the interval from treatment to estrus. A similar return-to-estrus interval was observed for each luteolytic agent among the three groups of heifers. Nevertheless, after embryo collection, fenprostalene had a tendency to induce the longest delays (p = 0.08). This tendency is supported by a higher proportion of delayed luteolysis and more heifers showing estrus later than 11 d post treatment. Also, during normal estrous cycles, 5/10 and 0/8 fenprostalene- and cloprostenol-treated heifers, respectively, showed progesterone concentrations higher than 1 ng/mL 48 h after treatment. Regardless of the luteolytic agent used, estrus was induced earlier (P < 0.005) during superovulation than when heifers were treated between Days 9 to 16 of the normal estrous cycle or after embryo collection. However, the return-to-estrus interval was similar between heifers treated during superovulation and those treated between Days 6 to 8 of the normal estrous cycle. After embryo collection, intervals before the return to estrus increased with the number of Corpora lutea (CL) palpated except in the nonresponding group (0 to 1 CL), which returned to estrus later than the low responding group (2 to 4 CL).  相似文献   

8.
The objective of this study was to determine whether periovulatory treatments with PGF2alpha affects the development of the CL, and whether the treatment was detrimental to the establishment of pregnancy. Reproductively sound mares were assigned randomly to one of the following treatment groups during consecutive estrus cycles: 1. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol (PGF2alpha analogue) on Days 0, 1, and 2 after ovulation (n=8), 2. 2 mL sterile water injection within 24 hours before artificial insemination and 500 microg cloprostenol on Days 0, 1, and 2 after ovulation (n=8); 3. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol on Day 2 after ovulation (n=8); or 4. 3,000 IU hCG within 24 hours before artificial insemination and 2 mL of sterile water on Days 0, 1, and 2 after ovulation (controls; n=8). Blood samples were collected from the jugular vein on Days 0, 1, 2, 5, 8, 11, and 14 after ovulation. Plasma progesterone concentrations were determined by the use of a solid phase 125I radioimmunoassay. All mares were examined for pregnancy by the use of transrectal ultrasonography at 14 days after ovulation. Mares in Group 1 and 2 had lower plasma progesterone concentrations at Day 2 and 5, compared to mares in the control group (P < 0.001). No difference was detected between group 1 and 2. Plasma progesterone concentrations in group 3 were similar to the control group until the day of treatment, but decreased after treatment and were significantly lower than the control group at Day 5 (P < 0.001). Plasma progesterone concentrations increased in all treatment groups after Day 5, and were comparable among all groups at Day 14 after ovulation. Cloprostenol treatment had a significant effect on pregnancy rates (P < 0.01). The pregnancy rate was 12.5% in Group 1, 25% in Group 2, 38% in Group 3, and 62.5% in Group 4. It was concluded that periovulatory treatment with PGF2alpha has a detrimental effect on early luteal function and pregnancy.  相似文献   

9.
Mares (n = 30) were treated in the post-ovulatory period with saline, oxytocin, or cloprostenol (Clo). Dose, administration frequency and treatment day (Day 0, 1 or 2 post-ovulation) were evaluated. Interovulatory interval of control cycles was 22.7 (+/-0.36) days with a range of 20.6 (+/-1.44) to 23.8 (+/-1.39) days among all treatment groups. Mares treated with two micro-doses of cloprostenol on Day 2 post-ovulation had the shortest interovulatory interval. This group also had the lowest mean circulating progesterone concentrations on Days 3-7 and 13, and was the slowest group to reach concentrations of 5 ng/ml. Repeated administration of cloprostenol over 24 h in the early post-ovulatory period may more effectively impair luteal function than single doses. This could negatively affect pregnancy outcome but may be effective for lysing the early post-ovulatory luteal structure when mares are not bred.  相似文献   

10.
Administration of 10 mg estradiol valerate (EV) to nonlactating Holstein cows on Days 16 of the estrous cycle prevented ovulation in 7 of 8 cows for 14 days post-injection. In these 7 cows, the timing of luteolysis and the luteinizing hormone (LH) surge was variable but within the normal range. At 14 days post-treatment, each of these cows had a large (greater than 10 mm) follicle, with 558 +/- 98 ng/ml estradiol-17 beta, 120 +/- 31 ng/ml testosterone, and 31 +/- 2 ng/ml progesterone in follicular fluid (means +/- SE). A second group of animals was then either treated with EV as before (n = 22), or not injected (control, n = 17) and ovariectomized on either Day 17, Day 18.5, Day 20, or Day 21.5 (24, 60, 96, or 132 h post-EV). Treatment with EV did not influence the timing of luteolysis, but surges of LH occurred earlier (59 +/- 8 h post-EV vs. 100 +/- 11 h in controls). The interval from luteolysis to LH peak was reduced from 44 +/- 6 h (controls) to 6.9 +/- 1.5 h (treated). Histologically, the largest follicle in controls tended to be atretic before luteolysis, but nonatretic afterwards, whereas the largest follicle in treated animals always tended to be atretic. Nonatretic follicles contained high concentrations of estradiol (408 +/- 59 ng/ml) and moderate amounts of testosterone (107 +/- 33 ng/ml) and progesterone (101 +/- 21 ng/ml), whereas atretic follicles contained low concentrations of estradiol (8 +/- 4 ng/ml) and testosterone (12 +/- 4 ng/ml), and either low (56 +/- 24 ng/ml) or very high (602 +/- 344 ng/ml) concentrations of progesterone. This study suggests that EV prevents ovulation by inducing atresia of the potential preovulatory follicle, which is replaced by a healthy large follicle by 14 days post-treatment.  相似文献   

11.
Simultaneous injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH) or saline were given to 32 diestrous dairy cows to test the ability of GnRH to improve estrous and ovulation synchrony beyond that of PGF alone. Cows were randomly assigned to receive PGF on Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all cows were further assigned to simultaneous injection of GnRH or saline. Corpus luteum (CL) regression, return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF in all cows and were not affected by GnRH. Gonadotropin releasing hormone inducted premature ovulation or delayed return to estrus in 7 of 8 cows treated with PGF/GnRH on Day 8 and 3 of 8 cows treated with PGF/GnRH on Day 10. Further, cows with premature GnRH-induced ovulations failed to develop and maintain a fully functional CL, and all returned to estrus 7 to 13 days after the induced ovulation. These data indicate that GnRH administered simultaneously with a luteolytic dose of PGF disrupts follicular dynamics and induces premature ovulation or delays normal return to estrus and, therefore, does not improve the synchrony of estrus and ovulation achieved with PGF alone.  相似文献   

12.
The effect of an induced hyperadrenal state on luteinizing hormone (LH) secretion and subsequent ovarian function was examined in both intact and adrenalectomized (ADRX) heifers. Treatments were begun on Day 2 or Day 16 of an estrous cycle in order to examine their effect on corpus luteum development or ovulation, respectively. In Experiment I, continuous intravenous infusion of ACTH (1.0 mg/24 h) to intact heifers decreased LH concentrations during the early phase of the cycle (Days 3-5). Treatment of ADRX heifers with hydrocortisone succinate (HS) (100 mg/24 h) did not appear to change mean LH concentrations, although da Rosa and Wagner (1981) have reported reduced plasma concentrations of progesterone at mid-cycle in these ACTH-treated intact heifers and HS-treated ADRX heifers. ACTH treatment of ADRX heifers had no effect on LH or progesterone. In the second study, there were similar frequencies of LH surges at the anticipated time of ovulation in all treatment groups. HS (100 mg/24 h) in ADRX heifers and ACTH (0.5 mg/24 h) in intact heifers was given continuously beginning on Day 16 of an estrous cycle. Although some animals in all groups exhibited LH surges, the ACTH-treated intact and HS-treated ADRX heifers failed to show a consistent subsequent increase in progesterone concentrations in plasma, suggesting a failure of luteal development. Although no difference was seen in baseline concentrations of LH, there was a greater difference between basal and overall mean LH concentrations in control groups than was observed in ACTH- or HS-treated animals. These induced hyperadrenal states resulted in depression of ovarian function as shown by decreased plasma progesterone during the luteal phase of the cycle. It is not known if other noncorticoid steroids from the adrenal cortex are necessary for a full expression of this effect.  相似文献   

13.
A study was conducted to determine the timing of ovulation relative to the onset of oestrus and the preovulatory LH surge in fallow deer. Mature fallow does were randomly allocated to two treatments (N = 10 per treatment) designed to synchronize oestrus on or about 17 May. Does assigned to Group 1 (prostaglandin-induced oestrus) each initially received single intravaginal CIDR [Controlled Internal Drug Release] devices for 13 days followed by an i.m. injection of 750 mg cloprostenol on Day 12 (15 May) of the subsequent luteal cycle. Does assigned to Group 2 (progesterone-induced oestrus) each received CIDR devices for 13 days, with withdrawal occurring on 15 May. All does were run with crayon-harnessed bucks (10:1 ratio) from the start of synchronization (18:00 h 15 May). Ten does (5 per group) were blood sampled via indwelling jugular cannulae every 2 h for 72 h from cloprostenol injection or CIDR device withdrawal and the plasma was analysed for concentrations of progesterone and LH by radioimmunoassay. Does within each treatment were randomly allocated to an ovarian examination time of 12, 16, 20 or 24 h after the onset of oestrus. Laparoscopy was repeated at 12-h intervals until ovulation was recorded. The ovaries of does failing to exhibit oestrus were examined 72 and 86 h after cloprostenol injection or CIDR device withdrawal. A total of 17 does were observed to exhibit oestrus at a mean (+/- s.e.m.) interval from treatment of 44.6 +/- 3.6 h for Group 1 (N = 9) and 34.1 +/- 2.5 h for Group 2 (N = 8).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A controlled study was carried out to investigate the effects of suprabasal plasma progesterone concentrations on blood plasma patterns of progesterone, LH and estradiol-17beta around estrus. Heifers were assigned to receive subcutaneous silicone implants containing 2.5 g (n=4), 5 g (n=4), 6 g (n=3), 7.5 g (n=3) or 10 g (n=4) of progesterone, or implants without hormone (controls, n=5). The implants were inserted on Day 8 of the cycle (Day 0=ovulation) and left in place for 17 d. The time of ovulation was determined by ultrasound scanning. Blood was collected daily from Days 0 to 14 and at 2 to 4-h intervals from Days 15 to 27. Control heifers had the lowest progesterone concentrations on Days 20.5 to 21 (0.5 +/- 0.1 nmol L(-1)); a similar pattern was observed in heifers treated with 2.5 and 5 g of progesterone. In the same period, mean progesterone concentrations in the heifers treated with 6, 7.5 and 10 g were larger (P < 0.05) than in the controls, remaining between 1 and 2.4 nmol L(-1) until implant removal. A preovulatory estradiol increase started on Days 16.4 to 18.4 in all the animals. In the controls and in heifers treated with 2.5 and 5 g of progesterone, estradiol peaked and was followed by the onset of an LH surge. In the remaining treatments, estradiol release was prolonged and increased (P < 0.05), while the LH peak was delayed (P < 0.05) until the end of the increase in estradiol concentration. The estrous cycle was consequently extended (P < 0.05). In all heifers, onset of the LH surge occurred when progesterone reached 0.4 to 1.2 nmol L(-1). The induction of suprabasal levels of progesterone after spontaneous luteolysis caused endocrine asynchronies similar to those observed in cases of repeat breeding. It is suggested that suprabasal concentrations of progesterone around estrus may be a cause of disturbances oestrus/ovulation.  相似文献   

15.
This study was designed to compare two timed insemination protocols, in which progesterone, GnRH and PGF2alpha were combined, with the Ovsynch protocol in presynchronized, early postpartum dairy cows. Reproductive performance was also evaluated according to whether cows showed high or low plasma progesterone concentration, at the onset of treatment. One hundred and six early postpartum dairy cows were presynchronized with two cloprostenol treatments given 14 days apart, and then assigned to one of the three treatment groups. Treatments for the synchronization of estrus in all three groups started 7 days after the second cloprostenol injection, which was considered Day 0 of the actual treatment regime. Cows in the control group (Ovsynch, n=30) were treated with GnRH on Day 0, PGF2alpha on Day 7, and were given a second dose of GnRH 32 h later. Cows in group PRID (n=45) were fitted with a progesterone releasing intravaginal device (PRID) for 9 days, and were given GnRH at the time of PRID insertion and PGF2alpha on Day 7. In group PRID/GnRH (n=31), cows received the same treatment as in the PRID group, but were given an additional GnRH injection 36 h after PRID removal. Cows were inseminated 16-20 h after the administration of the second GnRH dose in the Ovsynch group, and 56 h after PRID removal in the PRID and PRID/GnRH groups. Ovulation rate was determined on Day 11 postinsemination by detecting the presence of a corpus luteum in the ovaries. Lactation number, milk production, body condition at the onset of treatment and treatment regime were included as potential factors influencing ovulation and pregnancy after synchronization. Logistic regression analysis for cows with high and low progesterone concentration on treatment Day 0 revealed that none of the factors included in the models, except the interaction between progesterone and treatment regime, influenced the risk of ovulation and pregnancy significantly. In cows with high progesterone concentration at treatment onset, Ovsynch treatment resulted in a significantly improved pregnancy rate over values obtained following PRID or PRID/GnRH treatment. In cows with low progesterone concentration, PRID or PRID/GnRH treatment led to markedly increased ovulation and pregnancy rates with respect to Ovsynch treatment. These findings suggest the importance of establishing ovarian status in early postpartum dairy cows before starting a timed AI protocol, in terms of luteal activity assessed by blood progesterone.  相似文献   

16.
The administration of cloprostenol by intravulvosubmucous (i.v.s.m.) injection at 1 2 and 1 4 of the dose usually given by intramuscular (i.m.) injection, was tested in dairy cows for luteolysis and estrus synchronization. The i.m. injection was used in ten adult cows at the usual dose of 500 mug/animal. Eleven adult cows and 11 heifers were treated i.v.s.m. with a dose equivalent to 250 mug/animal and 125 mug/animal, respectively. Two injections of cloprostenol were administered 11 days apart to the cows not detected in oestrus after a single injection. Forty-three out of the total 46 animals were detected to be in dioestrus at the time of at least one of the injections, as reflected by the plasma progesterone concentrations at the time of treatments. Three out of the 43 animals injected during dioestrus were refractory to the luteolytic effect of cloprostenol; this appeared to be independent of the dosage and the route of administration (refractory cows were: one adult cow treated i.m. and two treated i.v.s.m. with 125 mug of cloprostenol). The mean time interval from injection to the onset of heat was 82.8 hours with a confidence limit for 95% of probability between 67.9 hours and 92.7 hours. The difference between treatments is not significant. The results suggest that in heifers and adult cows cloprostenol can be given i.v.s.m. route at a reduced dose of 1 4 of the usual 500 mug i.m. dosage without affecting the luteolytic effect of the drug or fertility.  相似文献   

17.
Serum progesterone and uterine levels of diamine oxidase (DAO) activity were determined during pregnancy in hamsters. Progesterone was elevated on Day 1 of pregnancy, had a transient peak on Day 5, remained relatively constant on Days 6–10, and then increased on Days 13 and 14. Uterine DAO activity could not be detected until Day 7 of pregnancy, approximately 1 12 days after the initiation of implantation. DAO activity was associated with placental tissue, and more than 90% of the activity was localized in the maternal placenta. The temporal relationship between changes in serum concentrations of progesterone and uterine levels of DAO activity following PG administration also was studied. Serum progesterone was significantly depressed by 6 hr after treatment with PGs on Day 7 of pregnancy. However, uterine levels of DAO activity at 6 hr in the treated animals were not different from those in control animals. In contrast, both the serum progesterone concentrations and uterine levels of DAO activity were significantly lower at 24 hr after PG treatment. The effects of PG treatment on uterine DAO activity were completely blocked by concomitant administration of progesterone. However, concomitant administration of Provera® only blocked the effect of one PG analog that was tested (9-deoxo-9-methylene-16,16-dimethyl0-PGE2). The data indicate that changes in uterine DAO activity following treatment with the PGs used here are primarily a consequence of a decrease in peripheral progesterone (i.e. a luteolytic effect of the PG).  相似文献   

18.
Thirty-two beef heifers were induced to superovulate by the administration of follicle stimulating hormone-porcine (FSH-P). All heifers received 32 mg FSH-P (total dose) which was injected twice daily in decreasing amounts for 4 d commencing on Days 8 to 10 of the estrous cycle. Cloprostenol was administered at 60 and 72 h after the first injection of FSH-P. Heifers were observed for estrus every 6 h and were slaughtered at known times between 48 to 100 h after the first cloprostenol treatment. The populations of ovulated and nonovulated follicles in the ovaries were quantified immediately after slaughter. Blood samples were taken at 2-h intervals from six heifers from 24 h after cloprostenol treatment until slaughter and the plasma was assayed for luteinizing hormone (LH) concentrations. The interval from cloprostenol injection to the onset of estrus was 41.3 +/- 1.25 h (n = 20). The interval from cloprostenol injection to the preovulatory peak of LH was 43.3 +/- 1.69 h (n = 6). No ovulations were observed in animals slaughtered prior to 64.5 h after cloprostenol (n = 12). After 64.5 h, ovulation had commenced in all animals except in one animal slaughtered at 65.5 h. The ovulation rate varied from 4 to 50 ovulations. Approximately 80% of large follicles (> 10 mm diameter) had ovulated within 12 h of the onset of ovulation. Onset of ovulation was followed by a dramatic decrease in the number of large follicles (> 10 mm) and an increase in the number of small follicles (相似文献   

19.
Meira C  Ferreira JC  Papa FO  Henry M 《Theriogenology》1998,49(8):1465-1473
The objectives of this study were to determine ovarian activity (with ultrasound) and plasma concentrations of progesterone and estradiol during pregnancy in jennies. There was considerable ovarian activity during the second month of pregnancy. Secondary corpora lutea (total of 2 to 7 per jenny) were formed (mainly by luteinization) starting on Day 41.8 +/- 1.0 (range Days 38 to 46; ovulation = Day 0). The echogenicity of the primary and secondary corpora lutea gradually decreased during pregnancy. Plasma progesterone concentrations increased between Days 0 and 10 (0.9 and 19.9 ng/mL, respectively), gradually decreased to Day 30 (12.1 ng/mL), increased between Days 30 and 40 (plateau, at approximately 17 ng/mL), gradually declined from Days 110 to 160 (nadir of approximately 6 ng/mL), and remained nearly constant until increasing again just before parturition. Plasma estradiol concentrations increased gradually from Day 65, peaked (1.2 ng/mL) on Day 165 (> or = 1 ng/mL on Days 150 to 210), and decreased thereafter, with very low concentrations during the last 20 d before parturition. Ovarian function and hormone profiles were generally similar to those previously reported during pregnancy in mares.  相似文献   

20.
Pregnant rats were injected twice daily for 1-3 days (Days 13-16 of pregnancy) with various doses of ovine LH. Follicular maturation was determined by the ability of the follicles to ovulate in response to 10 i.u. hCG as well as by endogenous production of oestradiol-17 beta and inhibin. In control animals, no ovulation was induced by hCG given on Day 16 of pregnancy. An injection of hCG on Day 16 of pregnancy, however, induced ovulation in LH-treated animals (6.25-50.0 micrograms LH per injection, s.c. at 12-h intervals from Days 13 to 16). Concentrations of oestradiol-17 beta and inhibin activity in ovarian venous plasma increased after the administration of LH, indicating that development of ovulatory follicles had been induced. Abolishing the decline in plasma LH values therefore induced maturation of a new set of follicles or prevented the atresia of large antral follicles usually seen at this time of pregnancy. Plasma and pituitary concentrations of FSH decreased in LH-treated animals compared with those in control animals. Concentrations of progesterone, testosterone and oestradiol-17 beta in the peripheral plasma were not significantly different between the two groups. These results suggest that the increase in inhibin secretion from the ovary containing maturing follicles after LH treatment may suppress the secretion of FSH from the pituitary gland. These findings indicate that (1) the development of ovulatory follicles can be induced by the administration of exogenous LH during mid-pregnancy in the rat and (2) basal concentrations of FSH are enough to initiate follicular maturation even in the presence of active corpora lutea of pregnancy, when appropriate amounts of plasma LH are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号