首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of maternal and formula milk on lipid metabolism was studied in 7-day-old pigs. Lipid content, fatty acid composition, lipogenic enzyme activities and expression of GLUT4 mRNA were determined in subcutaneous adipose tissue and skeletal muscle from pigs that were bottle-fed formula milk (F) or sow milk (SM), or were sow-reared (SR). Bottle-fed pigs were isoenergetically fed and achieved similar daily body weight gain. SR pigs have a higher (P < 0.05) body weight gain than bottle-fed pigs. Lipid content of adipose tissue was lower (P < 0.05) in F than in SM and SR pigs. In muscle, lipid content did not differ significantly between groups. In adipose tissue, acetyl-CoA-carboxylase (CBX), fatty acid synthase (FAS), malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PDH) and lipoprotein lipase (LPL) activities and GLUT4 mRNA levels were higher (P < 0.05) in SR than in bottle-fed pigs. In muscle, ME and G6PDH activities and GLUT4 mRNA were higher (P < 0.05) in F than in SM and SR pigs; LPL was not detected. The present study indicates that lipogenic enzyme activities and GLUT4 mRNA expression are regulated differently in subcutaneous adipose tissue and skeletal muscle in the neonatal pig.  相似文献   

2.
Depletion of GLUT4, the primary glucose transporter protein in adipose tissue and skeletal muscle, is reported to contribute to insulin resistance in pregnancy or diabetes. To examine this phenomenon, the expression of GLUT4 protein was assessed by Western blotting in streptozotocin-induced diabetic pregnant rats. In adipose tissue, relative to control, it was decreased by 30% in the normal pregnant group (p<0.001), by 37% in the diabetic nonpregnant group (p<0.01) and by 65% in the diabetic pregnant group (p<0.001). On the other hand, no significant variation was evident among the groups in skeletal muscle. To assess the mechanisms responsible for depletion of GLUT4 protein in adipose tissue, we quantitated levels of GLUT4 mRNA with a RNase protection assay. It was decreased by 44% in the normal pregnant group (p<0.05) and by 55% in the diabetic pregnant group (p<0.05), but not altered in the diabetic nonpregnant group. These results suggest that the depletion of GLUT4 protein in adipose tissue is a factor contributing to insulin resistance in pregnancy or diabetes, especially when the two states exist in combination.  相似文献   

3.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

4.
To study the molecular basis of tissue-specific expression of the GLUT4/muscle-fat facilitative glucose transporter gene, we generated lines of transgenic mice carrying 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene fused to a chloramphenicol acetyltransferase (CAT) reporter gene (hGLUT4[2.4]-CAT). This reporter gene construct was specifically expressed in tissues that normally express GLUT4 mRNA, which include both brown and white adipose tissues as well as cardiac, skeletal, and smooth muscle. In contrast, CAT reporter activity was not detected in brain or liver, two tissues that do not express the GLUT4 gene. In addition, the relative levels of CAT mRNA driven by the human GLUT4 promoter in various tissues of these transgenic animals mirrored those of the endogenous mouse GLUT4 mRNA. Since previous studies have observed alterations in GLUT4 mRNA levels induced by fasting and refeeding (Sivitz, W. I., DeSautel, S. L., Kayano, T., Bell, G. I., and Pessin, J. E. (1989) Nature 340, 72-74), the regulated expression the hGLUT4[2.4]-CAT transgene was also assessed in these animals. Fasting was observed to decrease CAT activity in white adipose tissue which was super-induced upon refeeding. These alterations in CAT expression occurred in parallel to the changes in endogenous mouse GLUT4 mRNA levels. Although CAT expression in skeletal muscle and brown adipose tissue was unaffected, the endogenous mouse GLUT4 mRNA was also refractory to the effects of fasting/refeeding in these tissues. These data demonstrate that 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene contain all the necessary sequence elements to confer tissue-specific expression and at least some of the sequence elements controlling the hormonal/metabolic regulation of this gene.  相似文献   

5.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   

6.
Takemori K  Kimura T  Shirasaka N  Inoue T  Masuno K  Ito H 《Life sciences》2011,88(25-26):1088-1094
AimsTo determine the effects of food restriction (FR) on the expression of Sirt1 and its down-stream factors related to lipid and glucose metabolism in obese and hypertensive rats (SHRSP/IDmcr-fa), as a model of human metabolic syndrome.Main methodsMale, 10-week-old SHRSP/IDmcr-fa rats were treated with 85% FR for 2 weeks. Metabolic parameters, serum adipocytokines and distribution of serum adiponectin multimers were investigated. Sirt1 expression was determined in epididymal adipose tissue, liver and skeletal muscle. We also determined the expression of PPARα, γ and other adipocyte-related genes in epididymal adipose tissue, and glucose transporters (GLUT2 and GLUT4) in the liver and skeletal muscle.Key findingsFR improved the general conditions as well as blood chemistry of SHRSP/IDmcr-fa rats. In the epididymal adipose tissue of the FR rats, Sirt1 expression was enhanced, as was adiponectin, whereas leptin was downregulation, findings that were paralleled by the serum protein levels. Furthermore, the serum ratio of high to total adiponectin was increased in the FR group. The mRNA expression of Sirt1 was upregulated in the adipose tissue in the FR group. Sirt1 mRNA expression was downregulated, while PPARα and GLUT2 expression was enhanced in the liver. No differences were found in terms of Sirt1, PPAR or GLUT4 expression in skeletal muscle.SignificanceThese results indicate that FR corrects adipokine dysfunction by activating PPARγ via Sirt1 in adipose tissue. Furthermore, glucose and lipid metabolism are activated by upregulation of GLUT2 via the activation of PPARα in the liver.  相似文献   

7.
Insulin receptor (IR) gene expression at the mRNA level was investigated in liver, hindlimb skeletal muscle, and epididymal adipose tissue of rats exposed to prolonged in vivo administration of adrenaline in relation to control rats. In the liver of adrenaline-treated rats, there were no differences in relation to controls when DNA and protein content were measured. In skeletal muscle, only a slight decrease in protein concentration was detected. By contrast, a clear increase in both protein and DNA content was observed in the adipose tissue of treated animals. Northern blot assays revealed two IR mRNA species of approximately 9.5 and 7.5 Kb in the three tissues from controls. Adrenaline treatment induced an increase of approximately 60% in the levels of both RNAs in adipose tissue but not in liver or skeletal muscle. These results provide evidence for an in vivo tissue-specific regulation of IR gene expression at the mRNA level in rats under an experimental condition of excess of catecholamines.  相似文献   

8.
9.
When rats were exposed to a cold environment (4 degrees C) for 10 days, tissue glucose utilization was increased in brown adipose tissue (BAT), a tissue specified for non-shivering thermogenesis, but not in skeletal muscle. Cold exposure also caused an increase in the amount of GLUT4, an isoform of glucose transporters expressed in insulin-sensitive tissues, in parallel with an increased cellular level of GLUT4 mRNA. In contrast to BAT, no significant effect of cold exposure was found in skeletal muscle. The results suggest the cold-induced increase in glucose utilization by BAT is attributable, at least in part, to the increased expression of GLUT4.  相似文献   

10.
We have previously reported that systemic epidermal growth factor (EGF) treatment in rats reduces the amount of adipose tissue despite an unaltered food intake. The mitochondrial uncoupling proteins (UCP2 and UCP3) are thought to uncouple the respiratory chain and thus to increase energy expenditure. In order to find out whether the UCP system was involved in the EGF-induced weight loss, the effects of EGF on UCP2 and UCP3 in adipose tissue and skeletal muscle were investigated in the present study. Eight rats were treated with placebo or EGF (150 microg/kg/day) for seven days via mini-osmotic pumps. The EGF-treated rats gained significantly less body weight during the study period than the placebo-treated animals and had significantly less adipose tissue despite a similar food intake. The placebo group and the EGF group had similar UCP2 mRNA expression (in both adipose tissue and skeletal muscle), whereas the EGF-treated group compared to the placebo group had significantly higher UCP3 mRNA expression in both skeletal muscle (3.76 +/- 0.90 vs 8.41 +/- 0.87, P < 0.05) and in adipose tissue (6.38 +/- 0.71 vs 12.48 +/- 1.79, P < 0.05). In vitro studies with adipose tissue fragments indicated that the EGF effect probably is mediated indirectly as incubations with EGF (10 microM) were unable to affect adipose tissue UCP expression, whereas incubations with bromopalmitate stimulated both UCP2 and UCP3 mRNA expression twofold. Thus, EGF treatment in vivo was found to enhance UCP3 mRNA expression in both adipose tissue and skeletal muscle, which may indicate that the EGF effect on body composition might involve up-regulation of UCP3 in skeletal muscle and adipose tissue.  相似文献   

11.
Previous studies have shown that chronic salt overload increases insulin sensitivity, while chronic salt restriction decreases it. In the present study we investigated the influence of dietary sodium on 1) GLUT4 gene expression, by No the n and Western blotting analysis; 2) in vivo GLUT4 protein translocation, by measuring the GLUT4 protein in plasma membrane and microsome, before and after insulin injection; and 3) insulin signaling, by analyzing basal and insulin-stimulated tyrosine phosphorylation of insulin receptor (IR)-beta, insulin receptor substrate (IRS)-1, and IRS-2. Wistar rats we e fed no mal-sodium (NS-0.5%), low-sodium (LS-0.06%), o high-sodium diets (HS-3.12%) fo 9 wk and were killed under pentobarbital anesthesia. Compared with NS ats, HS ats inc eased (P < 0.05) the GLUT4 protein in adipose tissue and skeletal muscle, whereas GLUT4 mRNA was increased only in adipose tissue. GLUT4 expression was unchanged in LS ats compared with NS ats. The GLUT4 translocation in HS ats was higher (P < 0.05) both in basal and insulin-stimulated conditions. On the other hand, LS ats did not increase the GLUT4 translocation after insulin stimulus. Compared with NS ats, LS ats showed reduced (P < 0.01) basal and insulin-stimulated tyrosine phosphorylation of IRS-1 in skeletal muscle and IRS-2 in live, whereas HS ats showed enhanced basal tyrosine phosphorylation of IRS-1 in skeletal muscle (P < 0.05) and of IRS-2 in live. In summary, increased insulin sensitivity in HS ats is elated to increased GLUT4 gene expression, enhanced insulin signaling, and GLUT4 translocation, whereas decreased insulin sensitivity of LS ats does not involve changes in GLUT4 gene expression but is elated to impaired insulin signaling.  相似文献   

12.
Fatty acid transporter protein (FATP)-1 mRNA expression was investigated in skeletal muscle and in subcutaneous abdominal adipose tissue of 17 healthy lean, 13 nondiabetic obese, and 16 obese type 2 diabetic subjects. In muscle, FATP-1 mRNA levels were higher in lean women than in lean men (2.2 +/- 0.1 vs. 0.6 +/- 0.2 amol/microg total RNA, P < 0.01). FATP-1 mRNA expression was decreased in skeletal muscle in obese women both in nondiabetic and in type 2 diabetic patients (P < 0.02 vs. lean women in both groups), and in all women there was a negative correlation with basal FATP-1 mRNA level and body mass index (r = -0.74, P < 0.02). In men, FATP-1 mRNA was expressed at similar levels in the three groups both in skeletal muscle (0.6 +/- 0.2, 0.6 +/- 0.2, and 0.8 +/- 0.2 amol/microg total RNA in lean, obese, and type 2 diabetic male subjects) and in adipose tissue (0.9 +/- 0.2 amol/microg total RNA in the 3 groups). Insulin infusion (3 h) reduced FATP-1 mRNA levels in muscle in lean women but not in lean men. Insulin did not affect FATP-1 mRNA expression in skeletal muscle in obese nondiabetic or in type 2 diabetic subjects nor in subcutaneous adipose tissue in any of the three groups. These data show a gender-related difference in the expression of the fatty acid transporter FATP-1 in skeletal muscle of lean individuals and suggest that changes in FATP-1 expression may not contribute to a large extent to the alterations in fatty acid uptake in obesity and/or type 2 diabetes.  相似文献   

13.
Estrogen receptors (ERs) are expressed in adipose tissue and skeletal muscle, with potential implications for glucose metabolism and insulin signaling. Previous studies examining the role of ERs in glucose metabolism have primarily used knockout mouse models of ERα and ERβ, and it is unknown whether ER expression is altered in response to an obesity-inducing high-fat diet (HFD). The purpose of the current study was to determine whether modulation of glucose metabolism in response to a HFD in intact and ovariectomized (OVX) female rats is associated with alterations in ER expression. Our results demonstrate that a 6-wk HFD (60% calories from fat) in female rats induces whole body glucose intolerance with tissue-specific effects isolated to the adipose tissue, and no observed differences in insulin-stimulated glucose uptake, GLUT4, or ERα protein expression levels in skeletal muscle. In chow-fed rats, OVX resulted in decreased ERα with a trend toward decreased GLUT4 expression in adipose tissue. Sham-treated and OVX rats fed a HFD demonstrated a decrease in ERα and GLUT4 in adipose tissue. The HFD also increased activation of stress kinases (c-jun NH?-terminal kinase and inhibitor of κB kinase β) in the sham-treated rats and decreased expression of the protective heat shock protein 72 (HSP72) in both sham-treated and OVX rats. Our findings suggest that decreased glucose metabolism and increased inflammation in adipose tissue with a HFD in female rats could stem from a significant decrease in ERα expression.  相似文献   

14.
Insulin receptor (IR) gene expression at the mRNA level was investigated in hindlimb skeletal muscle, epididymal adipose tissue and in the liver of rats exposed to prolonged in vivo administration of deoxycorticosterone acetate (DOCA). Following treatment, plasma insulin levels were reduced while glucose levels increased compared to values in control rats. DOCA-treated animals showed an increase in blood pressure and a reduction in body weight. This treatment also induced hypokalemia and decreased plasma protein levels. Sodium levels were unaffected. Moreover, no differences in DNA and protein content or in the indicator of cell size (protein/DNA) were observed in the skeletal muscle or adipose tissue of animals. In contrast, there was a clear increase in the protein and DNA contents of the liver with no change in the indicator of cell size. Northern blot assays revealed 2 major IR mRNA species of approximately 9.5 and 7.5 Kb in the 3 tissues from control animals. DOCA treatment induced no change in the levels of either RNA species in skeletal muscle. However, a decrease of approximately 22% was detected in the levels of both species in adipose tissue whereas the liver showed an increase of 64%. These results provide the first evidence for an in vivo tissue-specific modulation of IR mRNA levels under experimental conditions of mineralocorticoid excess.  相似文献   

15.
Insulin resistance plays a major role in the pathogenesis of type 2 diabetes. Insulin regulates blood glucose levels primarily by promoting glucose uptake from the blood into multiple tissues and by suppressing glucose production from the liver. The glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in muscle and adipose tissue. Decreased GLUT4 expression in adipose tissue is a common feature of many insulin resistant states. GLUT4 expression is preserved in skeletal muscle in many insulin resistant states. However, functional defects in the intracellular trafficking and plasma membrane translocation of GLUT4 result in impaired insulin-stimulated glucose uptake in muscle. Tissue-specific genetic knockout of GLUT4 expression in adipose tissue or muscle of mice has provided new insights into the pathogenesis of insulin resistance. We recently determined that the expression of serum retinol binding protein (RBP4) is induced in adipose tissue as a consequence of decreased GLUT4 expression. We found that RBP4 is elevated in the serum of insulin resistant humans and mice. Furthermore, we found that increasing serum RBP4 levels by transgenic overexpression or by injection of purified RBP4 protein into normal mice causes insulin resistance. Therefore, RBP4 appears to play an important role in mediating adipose tissue communication with other insulin target tissues in insulin resistant states.  相似文献   

16.
Tsai YL  Hou CW  Liao YH  Chen CY  Lin FC  Lee WC  Chou SW  Kuo CH 《Life sciences》2006,78(25):2953-2959
The current study determined the interactive effects of ischemia and exercise training on glycogen storage and GLUT4 expression in skeletal muscle. For the first experiment, an acute 1-h tourniquet ischemia was applied to one hindlimb of both the 1-week exercise-trained and untrained rats. The contralateral hindlimb served as control. For the second experiment, 1-h ischemia was applied daily for 1 week to both trained (5 h post-exercise) and untrained rats. GLUT4 mRNA was not affected by acute ischemia, but exercise training lowered GLUT4 mRNA in the acute ischemic muscle. GLUT4 protein levels were elevated by exercise training, but not in the acute ischemic muscle. Exercise training elevated muscle glycogen above untrained levels, but this increase was reversed by chronic ischemia. GLUT4 mRNA and protein levels were dramatically reduced by chronic ischemia, regardless of whether the animals were exercise-trained or not. Chronic ischemia significantly reduced plantaris muscle mass, with a greater decrease found in the exercise-trained rats. In conclusion, the exercise training effect on muscle GLUT4 protein expression was prevented by acute ischemia. Furthermore, chronic ischemia-induced muscle atrophy was exacerbated by exercise training. This result implicates that exercise training could be detrimental to skeletal muscle with severely impaired microcirculation.  相似文献   

17.
18.
Chronic administration of leptin has been shown to reduce adiposity through energy intake and expenditure. The present study aims to examine how acute central infusion of leptin regulates peripheral lipid metabolism, as assessed by markers indicative of their mobilization and utilization. A bolus infusion of 1 microg/rat leptin into the third cerebroventricle increased the expression of mRNA for hormone-sensitive lipase (HSL), an indicator of lipolysis, in white adipose tissue (WAT). This was accompanied by elevation of plasma levels of glycerol, but not of free fatty acids, as compared to the saline control (P < 0.03). The same treatment with leptin decreased plasma insulin levels but did not affect the plasma glucose level (P < 0.05 for insulin). Among the major regulators of the transportation or utilization of energy substrates, leptin treatment increased expression of mRNA for uncoupling protein 1 (UCP1) in brown adipose tissue (BAT), UCP2 in WAT, and UCP3 in quadriceps skeletal muscle, but not those for fatty acid-binding protein in WAT, carnitine phosphate transferase-1, a marker for beta oxidation of fatty acids in muscle, nor glucose transporter 4 in WAT and muscle (P < 0.01 for HSL, P < 0.05 for UCP1, and P < 0.005 for UCP2 and UCP3). These results indicate that, even in a single bolus, leptin may regulate the mobilization and/or utilization of energy substrates such as fatty acids by affecting lipolytic activity in WAT and by increasing the expression of UCPs in BAT, WAT, and muscle.  相似文献   

19.
Calorie restriction (CR) has been shown to improve peripheral insulin resistance and type 2 diabetes in animal models. However, the exact mechanism of CR on GLUT4 expression and translocation in insulin-sensitive tissues has not been well elucidated. In the present study, we examine the effect of CR on the expression of glucose transporter 4 (GLUT4), GLUT4 translocation, and glucose transport activity in adipose tissue from Otsuka Long-Evans Tokushima Fatty (OLETF) rat and control (LETO) rats. CR (70% of satiated group) ameliorated hyperglycemia and improved impaired glucose tolerance (IGT) in OLETF rats. In skeletal muscle, the expression levels of GLUT4 and GLUT1 were not significantly different between LETO and OLETF rats, and were not affected by CR. By contrast, the expression level of GLUT4 was markedly decreased in the adipose tissue of OLETF rats, but was dramatically increased by CR. The GLUT4 recruitment stimulated by insulin was also improved in OLETF rat adipocytes by CR. The insulin-stimulated 2-deoxyglucose (2DG) uptake was significantly increased in adipocytes from the CR OLETF rats, as compared with the satiated OLETF rats. Taken together, these results suggest that CR improves whole body glucose disposal and insulin resistance in OLETF rats, and that these effects may associate with the increased adipocyte-specific GLUT4 expression.  相似文献   

20.
 为探讨禁食和胰岛素对解偶联蛋白 - 1、2、3基因 (UCP1 ,2 ,3)表达的影响 ,应用 RT- PCR方法观察了在不同禁食时间和应用胰岛素条件下大鼠白色脂肪组织、棕色脂肪组织和骨骼肌中 UCP1 ,2 ,3m RNA水平的变化 .UCP1基因只在大鼠棕色脂肪组织中表达 .UCP2 ,3基因在三种组织中均有表达 ,在白色脂肪组织中以 UCP2表达为主 ;在骨骼肌中以 UCP3表达为主 .过夜禁食使棕色脂肪组织 UCP1 ,3m RNA水平明显下降 (P<0 .0 1 ) ;UCP2 m RNA水平在三种组织中均呈上升反应 ,以白色脂肪组织中表现最为明显 (P<0 .0 5) ;而对白色脂肪组织和骨骼肌中 UCP3基因表达无明显影响 .禁食时间延长至 48h,除棕色脂肪组织中 UCP2 ,3基因有明显下降外 ,各组织中UCPs基因表达基本调节至正常或高于对照组水平 .胰岛素对 UCPs基因表达水平有一定的上调作用 ,这一作用对棕色脂肪组织 UCPs各基因及骨骼肌中 UCP3基因表现得尤为明显 (P<0 .0 5) .大鼠 UCPs基因表达有一定的组织特异性 ;禁食时间对三种组织中 UCPs各成员基因表达的影响有时相上的区别 ;胰岛素可以调 UCPs各成员基因的表达 .结果反映了 UCPs各成员在能量代谢调节上的不同作用 ,这为理解膳食 -产热与体重调节的关系 ,及其能量代谢平衡与疾病关系提供了实验依据  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号