首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammalian cells the catabolism of membrane phosphoglycerides proceeds probably entirely through a deacylation pathway catalysed by phospholipase A and lysophospholipase (Wise & Elwyn, 1965). In the initial attack of diacylphosphoglycerides by phospholipase A two enzymatic activities with different positional specificities have been distinguished: phospholipase A1 (phosphatidate 1-acyl hydrolase EN 3.1.1.32) and phospholipase A2 (phosphatidate 2-acyl hydrolase EN 3.1.1.4) (Van Deenen & De Haas, 1966). Studies on these intracellular phospholipases were mainly concerned with their subcellular localization. Only occasionally more detailed enzymatic investigations have been conducted on them, in contrast to export phospholipases e.g. from snake venom, bee venom and porcine pancreas, which have been extensively investigated (Brockerhoff & Jensen 1974a). In a previous paper (De Wolf et al., 1976a), the presence of phospholipase A1 and phospholipase A2 activities in bovine thyroid was demonstrated, using 1-[9, 10-3H] stearoyl-2-[1-14C] linoleyl-sn-glycero-3-phosphocholine as a substrate. Optimal activity was observed in both instances at pH 4. Addition of the anionic detergent sodium taurocholate increased the A2 type activity and decreased the A1 type activity suggesting the presence of different enzymes. The lack of influence of Ca2+-ions and EDTA and the acid pH optima could suggest lysosomal localization. In this paper the subcellular distribution of both acid phospholipase activities is described as well as a purification scheme for phospholipase A1. Some characteristics of the purified enzyme preparation are discussed.  相似文献   

2.
1.1. Lysosome-enriched fractions were prepared by differential centrifugation of homogenates of luteinized rats ovaries. Acid phospholipase A activities were characterized with [U-14C]diacyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-[9,10-3H]- or [1-14C]oleoyl-sn-glycero-3-phosphocholine as substrates. Acid phospholipase A1 activity had properties similar to other hydrolases of lysosomal origin; subcellular distribution, latency and acidic pH optimum. Acid phospholipase A2 activity with similar characteristics was also tentatively identified. We were unable to exclude the possibility that the combined action of phospholipase A1 and lysophospholipase contributed to the release of acyl moieties from the 2-position of the synthetic substrates. 2. Lysophospholipase activity was present in the lysosome-enriched fractions. This activity had an alkaline pH optimum. 3. Phospholipase A1 and A2 activities solubilized from lysosome fractions by freeze-thawing were inhibited by Ca2+ and slightly activated by EDTA. A Ca2+- stimulated phospholipase A2 activity, with an alkaline pH optimum, remained in the particulate residue of freeze-thawed lysosome preparations. This activity is believed to represent mitochondrial contamination. 4. Activities of acid phospholipase A, as well as other acid hydrolases, increased approx. 1.5-fold between 1 and 4 days following induction of luteinizatin, suggesting a hormonal influence on lysosomal enzyme activities.  相似文献   

3.
In both supernatant and sediment of thyroid tissue homogenate phospholipase and lysophospholipase activities were demonstrated. In the supernatant, using 1-acyl-2[1-14C]linoleoyl-sn-glycero-3-phosphorocholine in the presence of sodium taurocholate, phospholipase A1 activity with pH optima at 3.6 and 4.8 and phospholipase A2 activity with pH optima at 3.6 and 5.7 were found. The sediment showed mainly phospholipase A2 activity with a pH optimum at pH 6.5. Lysophospholipase activity (optimum pH 7--8), USING 1-[9,10-(3)H]stearyl-sn-glycero-3-phosphorocholine as a substrate was present in both supernatant and sediment. Enzyme assays performed on subcellular fractions suggest the soluble phospholipases to be of lysosomal origin and the solubilized phospholipase A2 activity of homogenate sediment to be of microsomal origin. Incubations with 3H-14C mixed labelled phosphatidylcholine further confirmed the above observations.  相似文献   

4.
The metabolism of phosphatidylcholine (PC) was investigated in sonicated suspensions of bovine pulmonary artery endothelial cells and in subcellular fractions using two PC substrates: 1-oleoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho[14C]choline. When these substrates were incubated with the whole cell sonicate at pH 7.5, all of the metabolized 3H label was recovered in [3H]oleic acid (95%) and [3H]diacylglycerol (5%). All of the 14C label was identified in [14C]lysoPC (92%) and [14C]phosphocholine (8%). These data indicated that PC was metabolized via phospholipase(s) A and phospholipase C. Substantial diacylglycerol lipase activity was identified in the cell sonicate. Production of similar proportions of diacylglycerol and phosphocholine and the low relative activity of phospholipase C compared to phospholipase A indicated that the phospholipase C-diacylglycerol lipase pathway contributed little to fatty acid release from the sn-2 position of PC. Neither phospholipase A nor phospholipase C required Ca2+. The pH profiles and subcellular fractionation experiments indicated the presence of multiple forms of phospholipase A, but phospholipase C activity displayed a single pH optimum at 7.5 and was located exclusively in the particulate fraction. The two enzyme activities demonstrated differential sensitivities to inhibition by p-bromophenacylbromide, phenylmethanesulfonyl fluoride and quinacrine. Each of these agents inhibited phospholipase A, whereas phospholipase C was inhibited only by p-bromophenacylbromide. The unique characteristics observed for phospholipase C activity towards PC indicated the existence of a novel enzyme that may play an important role in lipid metabolism in endothelial cells.  相似文献   

5.
Phospholipase activity was studied in the protozoan Tetrahymena pyriformis NT-1 by using exogenous phosphatidylethanolamine and phosphatidylcholine. Several phospholipase activities were found in Tetrahymena homogenates. They were distinguished with respect to pH optimum, activity dependence on Ca2+, substrate specificity and positional specificity. Ca2+-Dependent phospholipase activity had an optimal pH around 9 and gave rise to free fatty acid and lysophospholipid. This enzyme hydrolyzes phosphatidylethanolamine but not phosphatidylcholine. The alkaline phospholipase with A1 activity was located mainly in the surface membrane (pellicle fraction). The enzyme activity had a pH optimum ranging from 8 to 9, and required 2 mM CaCl2 for the maximal activity. All detergents tested inhibited the enzyme activity. Ca2+-Independent phospholipase activity had an optimal pH from 4 to 5 and gave rise to free fatty acid, lysophospholipid, diacylglycerol, and monoacylglycerol. We concluded that there are at least three phospholipase in Tetrahymena homogenates, i.e., alkaline phospholipase A and acidic phospholipases A and C.  相似文献   

6.
Phospholipase A1, A2 and lysophospholipase activities in microsomes of Novikoff hepatoma host rat liver and regenerating rat liver were compared using 1-[9', 10'-3H2]palmitoyl-2-[1'-14C] linoleoyl-sn-glycero-3-phosphoethanolamine, 1-[1' -3H-]hexadecyl-2-acyl-sn-glycero-3-phosphoethanolamine, and 1-[9', 10'-3H2]palmitoyl-sn-glycero-3-phosphoethanolamine as substrates. 1. Microsomes of all three tissues showed two pH dependent peaks of hydrolytic activity, one at pH 7.5 and another at pH 9.5. 2. Phospholipid hydrolytic activity in microsomes from host liver and regenerating liver require Ca2+ for hydrolysis at pH 9.5, but not at pH 7.5. Hepatoma microsomes require Ca2+ for activity at both pH values. 3. Phospholipase A1 activity, stimulated by addition of Triton X-100 to the incubation mixtures, was detected in both host liver and regenerating liver microsomes. There was no evidence of phospholipase A1 activity in hepatoma microsomes. 4. Phospholipase A2 was detected in microsomes of all three tissues using 1-[1'-3H] hexadecyl-2-acyl-sn-glycero-3-phosphoethanolamine as a substrate. The activity required calcium and was inhibited by Triton X-100. 5. Lysophospholipase activity was evident in the microsomes from all three tissues. The activity was inhibited by both Ca2+ and Triton X-100. 6. Differences were also detected between host liver and hepatoma microsomal phospholipid hydrolase activities with respect to the effect of increasing protein concentration, apparent Michaelis-Menten constants, and time course of the reaction.  相似文献   

7.
Phospholipid metabolism in the rat renal inner medulla   总被引:2,自引:0,他引:2  
In view of the importance of phospholipids as a source of precursor fatty acids for the high prostaglandin synthesis in the renal inner medulla, we studied pathways of phospholipid esterification and degradation in the rat inner medulla. De novo acylation of [14C]arachidonate occurred predominantly in position 2 of phosphatidylcholine in the microsomal fraction. This newly esterified [14C]arachidonate was accessible to deacylation by a microsomal phospholipase A2 (EC 3.1.1.4) with alkaline optimum which was Ca2+-dependent and resistant to 0.1% deoxycholate. No phospholipase A1 (EC 3.1.1.32) activity against endogenous labeled phosphatidylcholine could be demonstrated in the microsomal fraction. When exogenous phosphatidylcholine labeled at position 2 was deacylated by renomedullary homogenates, labeled free fatty acid but no labeled lysophosphatidylcholine was recovered in the reaction products. This could be attributed to further degradation of generated lysophosphatidylcholine by a cytosolic lysophospholipase (EC 3.1.1.5). Sodium deoxycholate at a concentration of 0.1% or higher inhibited the lysophospholipase and allowed the demonstration of both A2 and A1 alkaline phospholipase activities in the homogenate. The major in vitro pathway of lysophosphatidylcholine disposition is further degradation by a cytosolic lysophospholipase, while reutilization for phosphatidylcholine synthesis through the action of a predominantly microsomal acyltransferase appears to be a minor pathway. In the presence of several acyl-CoAs, reutilization of lysophosphatidylcholine is significantly increased by an acyl-CoA:lysophosphatidylcholine acyltransferase (EC 2.3.1.23) but there is no preferential transfer of arachidonyl-CoA compared to other acyl-CoAs.  相似文献   

8.
1. Phospholipase C [EC 3.1.4.3] found in the growth medium of Streptomyces hachijoensis was purified about sixty-fold by dialysis and column chromatography on Sephadex G-50. 2. The active fraction was separated by isoelectric focusing into two fractions, phospholipase C-I (pI 6.0) and phospholipase C-II (pI 5.6). 3. Both purified phospholipases C were homogeneous by immunodiffusion and were not differentiated as regards antigencity. 4. Phospholipase C-I had maximal activity at pH 8.0 and the optimal temperature was 50degree. Phospholipase C-I was stable at 50degrees for 30 min and was stable at neutral pH. 5. The activity of phospholipase C-I was inhibited by high concentrations of various detergents such as Triton X-100, sodium, cholate, SDS and was also inhibited by Ca2+, Ba2+, Al3+, and EDTA, but was stimulated by Mg2+, and ethyl ether. 6. The Km value of phospholipase C-I was 0.9 mM, using phosphatidylcholine as a substrate. 7. By the gel filtration procedure, the molecular weights of phospholipase C-I and -II were both determined to be 18,000. 8. Phosphatidylcholine, phosphatidylinositol, cardiolipin, sphingomyelin, and lysophosphatidylcholine were hydrolyzed by phospholipase C-I, but phosphatidylethanolamine and phosphatidylserine were hydrolyzed with difficulty under the same conditions, Phospholipase C-I also hydrolyzed phosphatidic acid.  相似文献   

9.
1. Two phospholipase activities, provisionally designated as phospholipase activity I and phospholipase activity II, were found to be present in the mucosal homogenates of rat small intestine. These phospholipase activities were present in the membraneous particle fraction and were characterized in this study without further purification, using phosphatidylcholine as a substrate. Phospholipase activity I was assayed at pH 5.9 in the absence of deoxycholate, whereas phospholipase activity II was assayed at pH 9.4 in the presence of deoxycholate. Phospholipase activity I was more easily inactivated by heat treatment and trypsin digestion than phospholipase activity II. Both phospholipase activities were inhibited by diisopropyl-fluorophosphate but not by SH-binding reagents. 2. Phospholipase activity I had a pH optimum at 5.9. A sigmoid curve was obtained when the amount of the enzyme preparation was plotted against the phospholipase activity I. The unusually low activity found at low enzyme concentrations was enhanced by addition of the heat-inactivated enzyme preparation to a level where a linear relationship was found between the amount of enzyme and the activity. The effector present in the enzyme preparation was tentatively identified as fatty acid(s). The addition of oleic acid or linoleic acid to the incubation mixture enhanced the phospholipase activity I. At 1 mM levels of these fatty acids the highest activity was obtained when 1.5 mM phosphatidylcholine was used as a substrate. 3. The phospholipase activity II increased on addition of deoxycholate. In the presence of 5 mM deoxycholate, a pH optimum was found at 9.6. It was found that the maximal extent of hydrolysis of phosphatidylcholine in the incubation mixture was dependent on the concentration of deoxycholate. This indicates that deoxycholate facilitates the action of phospholipase activity II, presumably by forming deoxycholate-phosphatidylcholine mixed micelles. Phospholipase activity II was found to deacylate specifically the 2-acyl moiety of phospholipids.  相似文献   

10.
A previous study led to the discovery of new proteinases in yeast (Achstetter, T., Ehmann, C., and Wolf, D. H. (1981) Arch. Biochem. Biophys. 207, 445-454). The search for proteolytic enzymes active in the neutral pH range has been extended. Studies were done on a mutant lacking four well-known proteinases involved in protein degradation, the two endoproteinases A and B and the two carboxypeptidases Y and S. Twenty-nine chromogenic peptides (amino terminally blocked peptidyl-4-nitroanilides) as well as [3H]methylcasein were used as substrates in this search. For the detection of endoproteolytic activity using chromogenic peptide substrates two versions of the assay were used. In one system the direct cleavage of the 4-nitroanilide bond was measured. In the second, the cleavage of the chromogenic peptide at some site other than the 4-nitroanilide bond was measured. Both variations led to the discovery of multiple proteinase activities. Regulation of these proteolytic activities under different growth conditions of cells was observed. Proteolytic activity on [3H]methylcasein was also found. Ion-exchange chromatography and gel filtration were used for the reproducible separation of the multiple proteolytic activities.  相似文献   

11.
The significance of reutilization of surfactant phosphatidylcholine   总被引:8,自引:0,他引:8  
To assess the magnitude of reutilization of surfactant phosphatidylcholine, 68 3-day-old rabbits were injected intratracheally with a trace dose of [3H]choline-labeled surfactant mixed with [14C]palmitate-labeled synthetic dipalmitoylphosphatidylcholine. After timed kills we measured the total phosphatidylcholine associated counts/min in whole lung and alveolar wash and the specific activities of phosphatidylcholine in the alveolar wash, lamellar bodies, and microsomes isolated from the lung of each rabbit. Using a modification of the compartment analysis of Skinner et al. (Skinner, S. M., Clark, R. E., Baker, N., and Shipley, R. A. (1959) Am. J. Physiol. 196, 238-244), we found that surfactant phosphatidylcholine was reutilized with greater than 90% efficiency. The turnover time of the alveolar wash phosphatidylcholine was estimated to be 10.1 h and 9.3 h as measured by the 3H and 14C labels, respectively. From the ratios of alveolar wash-associated natural to synthetic phosphatidylcholine specific activities and from similar ratios obtained in 30 additional rabbits using [14C]choline-labeled natural surfactant and [3H]choline-labeled dipalmitoylphosphatidylcholine, we showed that phosphatidylcholine was reutilized intact rather than as component parts. Within 6 h of injection, the synthetic dipalmitoylphosphatidylcholine functioned metabolically as that administered in the form of natural surfactant.  相似文献   

12.
Phospholipase activities of rat intestinal mucosa homogenate have been determined from lysophosphatidylcholines [14C] and phosphatidylcholines [-3H-14C]. In the presence of phosphatidylcholines, at pH 6.5, the homogenate has a phospholipase B activity. At pH 8.5, a phospholipase A2 activity was shown. In the presence of lysophospatidylcholines, at pH 6.5, we notice a lysophospholipase A1 activity. A kinetic study of the reactions allows us to separate the activity B into a phospholipase A2 activity and a lysophospholipase A1 activity. Thus, it appears that the total phospholipase activity of rat intestinal mucosa would results from a phospholipase A2 activity and a lysophospholipase A1 activity.  相似文献   

13.
Phospholipase A2 and acyltransferase activities were identified in membranes associated with purified pancreatic zymogen granules. In homogenate and granule membranes, phospholipase activity was linearly related to protein concentration and was Ca2(+)-dependent with an alkaline pH optimum. The Ca2+ sensitivity was observed over the range of concentrations through which intracellular ionic Ca2+ is elevated by physiological stimuli in intact cells. Intact zymogen granules and granule membranes also demonstrated reacylating activity in the presence and absence of an exogenous acceptor. Reacylating activity was related to the concentration of lyosphospholipid added and was optimally activated at alkaline pH. A more rapid rate of reacylation was observed when [14C]arachidonoyl CoA was employed as the donor molecule rather than [3H]arachidonate (plus coenzyme A); this suggests the absence of acyl-CoA synthetase in the purified granule membranes. We conclude that granule membrane phospholipase A2 and acyltransferases may be involved in arachidonic acid turnover in exocrine pancreas and perhaps in membrane fusion events associated with exocytosis.  相似文献   

14.
Previous studies have reported an increased turnover of phospholipid in isolated islets of Langerhans in response to raised glucose concentrations. The present investigation was thus undertaken to determine the nature of any phospholipases that may be implicated in this phenomenon by employing various radiolabelled exogenous phospholipids. Hydrolysis of 1-acyl-2-[14C]arachidonoylglycerophosphoinositol by a sonicated preparation of islets optimally released radiolabelled lysophosphatidylinositol, arachidonic acid and 1,2-diacylglycerol at pH 5,7 and 9 respectively. This indicates the presence of a phospholipase A1 and a phospholipase C. However, the lack of any labelled lysophosphatidylinositol production when 2-acyl-1-[14C]stearoylglycerophosphoinositol was hydrolysed argues against a role for phospholipase A2 in the release of arachidonic acid. Phospholipase C activity as measured by phosphatidyl-myo-[3H]inositol hydrolysis was optimal around pH8, required Ca2+ for activity and was predominantly cytosolic in origin. The time course of phosphatidylinositol hydrolysis at pH 6 indicated a precursor-product relationship for 1,2-diacylglycerol and arachidonic acid respectively. The release of these two products when phosphatidylinositol was hydrolysed by either islet or acinar tissue was similar. However, phospholipase A1 activity was 20-fold higher in acinar tissue. Substrate specificity studies with islet tissue revealed that arachidonic acid release from phosphatidylethanolamine and phosphatidylcholine was only 8% and 2.5% respectively of that from phosphatidylinositol. Diacylglycerol lipase was also demonstrated in islet tissue being predominantly membrane bound and stimulated by Ca2+. The availability of non-esterified arachidonic acid in islet cells could be regulated by changes in the activity of a phosphatidylinositol-specific phospholipase C acting in concert with a diacylglycerol lipase.  相似文献   

15.
The hydrolysis of phosphatidylcholine (PC) associated with low-density lipoprotein (LDL) by homogenates of smooth muscle cells from rabbit aorta was studied. 1-Palmitoyl-2-[14C]oleoylPC associated with LDL (LDL-P[14C]OPC) or 1-linoleoyl-2-[14C]linoleoylPC associated with LDL (LDL-L[14C]LPC) was used as the substrate. The optimum pH for the formation of [14C]oleoyllysoPC from LDL-P[14C]OPC and for the formation of [14C]linoleoyllysoPC from LDL-L[14C]LPC was pH 4.5, and pH 4.5 and 7.0, respectively. These activities were designated as phospholipase A1 activities. The optimum pH values for the formation of [14C]oleate from LDL-L[14C]OPC and for the formation of [14C]linoleate from LDL-L[14C]LPC were pH 4.5 and 6.5, and pH 4.5, 6.5 and 8.5, respectively. These activities were designated as phospholipase A2 activities. Ca2+ did not affect acid phospholipase A1 activity, but decreased acid phospholipase A2 activity for the hydrolysis of LDL-L[14C]LPC. When smooth muscle cells were incubated with LDL, both phospholipase A1 and phospholipase A2 activities at pH 4.5 for the hydrolysis of LDL-L[14C]LPC increased significantly. These results indicate that phospholipases A1 and A2, which hydrolyze PC associated with LDL, exist in arterial smooth muscle cells and are involved in the metabolism of LDL incorporated into these cells.  相似文献   

16.
A new assay for phospholipase C activity that uses alkaline phosphatase to convert phosphorylcholine to inorganic phosphate is described. The determination of inorganic phosphate is performed in the presence of phosphatidylcholine and protein after the addition of sodium dodecyl sulfate. Phospholipase C activity determined by this coupled enzyme assay agrees well with data obtained by extracting and measuring phosphoryl[14C]choline produced from phosphatidyl[methyl-14C]choline. The assay is sensitive to 1 nmol of phosphate, requires no removal of protein or phospholipid, and will work with a variety of phospholipid substrates. The assay is faster and more sensitive than previously published procedures. Stimulation of phospholipase C from Clostridium perfringens by ammonium sulfate is also reported.  相似文献   

17.
The distribution of the hydrolysis of 1-acyl-2-[1-14C]arachidonoyl-sn-glycero-3-phosphocholine and the simultaneous biosynthesis of prostaglandins by subcellular fractions from human and rat skin membrane preparations were determined. The phospholipase A2 activity was distributed among the subcellular particulate preparations with the highest specific activity in the 105000g particulate fraction. The activity was optimal at pH 7.5 in the presence of 1.0 mM-CaCl2 and was inhibited by EDTA. The hydrolysis of phosphatidylcholine by the skin 105000g particulate fraction was inhibited by cortisol and triamcinolone acetonide and it was stimulated by histamine, bradykinin, retinoic acid and cholera enterotoxin (freeze-dried Vibrio cholerae). Furthermore hydrolysis of phosphatidylcholine by the skin phospholipase A was also enhanced by low concentrations of prostaglandin E2 and prostaglandin F2 alpha. These last results suggest that the amplication of the hydrolysis of phosphatidylcholine by prostaglandin E2 and prostaglandin F2 alpha, with the consequent release of arachidonic acid (the substrate of prostaglandin synthesis) is likely a positive-feedback regulation of the arachidonic acid-prostaglandin cascade.  相似文献   

18.
A phospholipase A2 activity directed against phosphatidylcholine was previously described in brush-border membrane from guinea pig intestine (Diagne, A., Mitjavila, S., Fauvel, J., Chap, H., and Douste-Blazy, L. (1987) Lipids 22, 33-40). In the present study, this enzyme was solubilized either with Triton X-100 or upon papain treatment, suggesting a structural similarity with other intestinal hydrolases such as leucine aminopeptidase, sucrase, or trehalase. The papain-solubilized form, which is thought to lack the short hydrophobic tail responsible for membrane anchoring, was purified 1800-fold to about 90% purity by ion exchange chromatography on DEAE-Sephacel, gel filtration on Ultrogel AcA44, and hydrophobic chromatography on phenyl-Sepharose. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a main band with an apparent molecular mass of 97 kDa was detected under reducing and nonreducing conditions. In the latter case, phospholipase A2 activity could be recovered from the gel and was shown to coincide with the 97-kDa protein detected by silver staining. The enzyme activity was unaffected by EGTA and slightly inhibited by CaCl2. The purified enzyme displayed a similar activity against phosphatidylcholine and phosphatidylethanolamine, whereas 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine hydrolysis was reduced by 50% compared to diacylglycerophospholipids. Using phosphatidylcholine labeled with either [3H]palmitic acid or [14C]linoleic acid in the 1- or 2-positions, respectively, the purified enzyme catalyzed the removal of [3H]palmitic acid, although at a lower rate compared to [14C]linoleic acid. This resulted in the formation of sn-glycero-3-phosphocholine, but only 1-[3H]palmitoyl-sn-glycero-3-phosphocholine was detected as an intermediary product. In agreement with this, 1-acyl-2-lyso-sn-[14C]glycero-3-phosphocholine was deacylated at almost the same rate as the sn-2-position of phosphatidylcholine. Since upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the two hydrolytic activities were detected at the same position as 97-kDa protein, the enzyme is thus considered as a phospholipase A2 with lysophospholipase activity (phospholipase B), which might be involved in phospholipid digestion.  相似文献   

19.
A possible role for an acidic subcellular compartment in biosynthesis of lung surfactant phospholipids was evaluated with granular pneumocytes in primary culture. Incubation with chloroquine (100μm) was used to perturb this compartment. With control cells, incorporation of [9,10-3H]palmitic acid into total lipids and into total phosphatidylcholines increased linearly with time up to 4h. Total incorporation into phosphatidylcholine during a 1h incubation was 999+85pmol of [9,10-3H]palmitic acid, 458±18pmol of [1-14C]oleic acid and 252±15pmol of [U-14C]glucose per μg of phosphatidylcholine phosphorus. The cellular content of either disaturated phosphatidylcholine or total phosphatidylcholines did not change during a 2h incubation with chloroquine. In the presence of chloroquine, the specific radioactivity of [3H]palmitic acid in disaturated phosphatidylcholine increased by 40%, and that of disaturated-phosphatidylcholine fatty acids from [U-14C]glucose increased by 125%. Incorporation of [1-14C]oleic acid into phosphatidylcholine was decreased by chloroquine by 79% and 33% in the presence or absence of palmitic acid respectively. Chloroquine stimulated phospholipase activity in intact cells, and in sonicated cells at pH4.0, but not at pH8.5. The observations indicate that chloroquine stimulates synthesis of disaturated phosphatidylcholine in granular pneumocytes from fatty acids, both exogenous and synthesized de novo, which can be due to stimulation of acidic phospholipase. This stimulation of acidic phospholipase A activity by chloroquine appears to be coupled to the synthesis of disaturated phosphatidylcholine, thereby enhancing remodelling of phosphatidylcholine synthesized de novo. Our findings, therefore, implicate the involvement of an acidic subcellular compartment in the remodelling pathway of disaturated phosphatidylcholine synthesis by granular pneumocytes.  相似文献   

20.
We have found a phospholipase D activity in the postnuclear fraction of human neutrophils, employing phosphatidylinositol as exogenous substrate. This phospholipase D activity was assessed by both phosphatidate formation and by free inositol release in the presence of 15 mM LiCl in the reaction mixture and in the absence of Mg2+ ions to prevent inositol-1-phosphate phosphatase activity. To assess further the phospholipase D activity, we studied its capacity to catalyze a transphosphatidylation reaction, as a unique feature of the enzyme. It was detected as [14C]phosphatidylethanol formation when the postnuclear fraction was incubated with [14C]phosphatidylinositol in the presence of ethanol. The phospholipase D showed a major optimum pH at 7.5 and a minor one at pH 5.0. Neutral and acid phospholipase D activities were differentially located in subcellular fractionation studies of resting neutrophils, namely in the cytosol and in the azurophilic granules, respectively. Neutral phospholipase D required Ca2+ ions to the active, whereas the acid enzyme activity was Ca2(+)-independent. The neutral phospholipase D activity showed a certain specificity for phosphatidylinositol, as it was able to hydrolyze phosphatidylinositol at a much higher rate than phosphatidylcholine, in the absence and in the presence of different detergents. This neutral phospholipase D activity behaved as a protein of high molecular mass (350-400 kDa) by gel filtration chromatography. Moreover, neutral phospholipase D activity was detected in the postnuclear fraction of human monocytes, by measuring free inositol release from phosphatidylinositol as exogenous substrate, under the same experimental conditions as those used with neutrophils. The enzyme displayed similar specific activities in both cell types as well as the same degree of activation after cell stimulation with the calcium ionophore A23187. These results demonstrate the existence of two phospholipase D activities with different pH optima and intracellular location in human neutrophils. Furthermore, these results suggest that this phospholipase D can play a role in signal-transducing processes during cell stimulation in human phagocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号