首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular endothelial growth factors (VEGFs) are a family of secreted polypeptides with a highly conserved receptor-binding cystine-knot structure similar to that of the platelet-derived growth factors. VEGF-A, the founding member of the family, is highly conserved between animals as evolutionarily distant as fish and mammals. In vertebrates, VEGFs act through a family of cognate receptor kinases in endothelial cells to stimulate blood-vessel formation. VEGF-A has important roles in mammalian vascular development and in diseases involving abnormal growth of blood vessels; other VEGFs are also involved in the development of lymphatic vessels and disease-related angiogenesis. Invertebrate homologs of VEGFs and VEGF receptors have been identified in fly, nematode and jellyfish, where they function in developmental cell migration and neurogenesis. The existence of VEGF-like molecules and their receptors in simple invertebrates without a vascular system indicates that this family of growth factors emerged at a very early stage in the evolution of multicellular organisms to mediate primordial developmental functions.  相似文献   

2.
Biology of vascular endothelial growth factors   总被引:12,自引:0,他引:12  
Roy H  Bhardwaj S  Ylä-Herttuala S 《FEBS letters》2006,580(12):2879-2887
Angiogenesis is the process by which new blood vessels are formed from existing vessels. The vascular endothelial growth factors (VEGFs) are considered as key molecules in the process of angiogenesis. The VEGF family currently includes VEGF-A, -B, -C, -D, -E, -F and placenta growth factor (PlGF), that bind in a distinct pattern to three structurally related receptor tyrosine kinases, denoted VEGF receptor-1, -2, and -3. VEGF-C and VEGF-D also play a crucial role in the process of lymphangiogenesis. Here, we review the biology of VEGFs and evaluate their role in pathological angiogenesis and lymphangiogenesis.  相似文献   

3.
Mammalian vascular endothelial growth factors constitute a family of polypeptides, vascular endothelial growth factor (VEGF)-A, -B, -C, -D and placenta growth factor (PlGF), that regulate blood and lymphatic vessel development. VEGFs bind to three types of receptor tyrosine kinases, VEGF receptors 1, 2, and 3, that are predominantly expressed on endothelial and some hematopoietic cells. Pox viruses of the Orf family encode highly related proteins called VEGF-E that show only 25-35% amino acid identity with VEGF-A but bind with comparable affinity to VEGFR-2. The crystal structure of VEGF-E NZ2 described here reveals high similarity to the known structural homologs VEGF-A, PlGF, and the snake venoms Vammin and VR-1, which are all homodimers and contain the characteristic cysteine knot motif. Distinct conformational differences are observed in loop L1 and particularly in L3, which contains a highly flexible GS-rich motif that differs from all other structural homologs. Based on our structure, we created chimeric proteins by exchanging selected segments in L1 and L3 with the corresponding sequences from PlGF. Single loop mutants did not bind to either receptor, whereas a VEGF-E mutant in which both L1 and L3 were replaced gained affinity for VEGFR-1, illustrating the possibility to engineer receptor-specific chimeric VEGF molecules. In addition, changing arginine 46 to isoleucine in L1 significantly increased the affinity of VEGF-E for both VEGF receptors.  相似文献   

4.
Novel VEGF family members: VEGF-B, VEGF-C and VEGF-D   总被引:6,自引:0,他引:6  
Vascular endothelial growth factors (VEGFs) constitute a group of structurally and functionally related growth factors that modulate many important physiological functions of endothelial cells. Currently, five different mammalian VEGFs have been identified and they all show unique temporal and spatial expression patterns, receptor specificity and function. The VEGFs may play pivotal roles in formation of the vascular systems during embryonic development, in regulation of capillary growth in normal and pathological conditions in adults, and in the maintenance of the normal vasculature. In the future, the VEGFs and their receptors may become important therapeutic tools in treatment of conditions characterized by aberrant or defective formation of blood vessels and lymphatic vessels.  相似文献   

5.
Receptor specificity determines the role of vascular endothelial growth factors (VEGFs), which either induce angiogenesis via VEGFR-1 and VEGFR-2 receptors or lymphangiogenesis via the VEGFR-3 receptor. Among the VEGFs, VEGF-A and VEGF-B predominantly induce angiogenesis while VEGF-C and VEGF-D induce lymphangiogenesis. The answer for the question of why VEGF-C and VEGF-D are not able to bind VEGFR-1 and behave as angiogenic growth factors may hide behind the details of the tertiary structures of these proteins. In the present study, the tertiary structure of human VEGF-C protein was modelled and the model was compared with the known human VEGF-A tertiary structure. In overall, the modelled structure highly resembled the structure of VEGF-A. The respective key residues that are involved in cysteine-knot motif formation in VEGF-A are similarly located and identically oriented in VEGF-C, indicating the presence of a VEGF-A-like homodimer. However, a VEGF-C homodimer created via monomer docking did not superimpose well with the VEGF-A homodimer. Rigid docking models of VEGF-C with the VEGFR-1 receptor revealed that in the VEGF-C–VEGFR-1 complex, the receptor–protein-interacting residues were not correctly oriented to induce angiogenesis via VEGFR-1. Mapping the electrostatic surface potentials to the protein surfaces revealed noteworthy number of dissimilarities between VEGF-A and VEGF-C, indicating that overall both proteins differ in their folding properties and stability.  相似文献   

6.
Vascular endothelial growth factor (VEGF)-C is a new member of the VEGF family, a group of polypeptide growth factors which play key roles in the physiology and pathology of many aspects of the cardiovascular system, including vasculogenesis, hematopoiesis, angiogenesis and vascular permeability. VEGF signalling in endothelial cells occurs through three tyrosine kinase receptors (VEGFRs), expressed by endothelial cells and hematopoietic precursors. With respect to the first VEGF described, VEGF-A, which is an endothelial cell specific mitogen and key angiogenic factor, VEGF-C seems to play a major role in the development of the lymphatic system. This may reflect the different binding properties of VEGFs to VEGFRs, in that VEGF-A binds to VEGFR-1 and -2, whereas VEGF-C acts through VEGFR-3, whose expression becomes restricted to lymphatics and certain veins during development. However, the finding that VEGF-C also binds to and activates VEGFR-2 may explain why it induces angiogenesis under certain conditions, which makes it relevant to experimental or clinical settings in which one would wish to block or to stimulate angiogenesis. In this paper we briefly discuss current knowledge on the biological activity of VEGF-C, emphasizing that, as has already been shown for a number of other angiogenic factors, the biological effects of VEGF-C are strictly dependent on the activity of other angiogenic regulators present in the microenvironment of the responding endothelial cells.  相似文献   

7.
Infections of humans and ungulates by parapoxviruses result in skin lesions characterized by extensive vascular changes that have been linked to viral-encoded homologues of vascular endothelial growth factor (VEGF). VEGF acts via a family of receptors (VEGFRs) to mediate endothelial cell proliferation, vascular permeability, and angiogenesis. The VEGF genes from independent parapoxvirus isolates show an extraordinary degree of inter-strain sequence variation. We conducted functional comparisons of five representatives of the divergent viral VEGFs. These revealed that despite the sequence divergence, all were equally active mitogens, stimulating proliferation of human endothelial cells in vitro and vascularization of sheep skin in vivo with potencies equivalent to VEGF. This was achieved even though the viral VEGFs bound VEGFR-2 less avidly than did VEGF. Surprisingly the viral VEGFs varied in their ability to cross-link VEGFR-2, induce vascular permeability and bind neuropilin-1. Correlations between these three activities were detected. In addition it was possible to correlate these functional variations with certain sequence and structural motifs specific to the viral VEGFs. In contrast to the conserved ability to bind human VEGFR-2, the viral growth factors did not bind either VEGFR-1 or VEGFR-3. We propose that the extensive sequence divergence seen in the viral VEGFs was generated primarily by selection against VEGFR-1 binding.  相似文献   

8.
Role of VEGF-A in vascularization of pancreatic islets   总被引:17,自引:0,他引:17  
Blood vessel endothelium has been recently shown to induce endocrine pancreatic development. Because pancreatic endocrine cells or islets express high levels of vascular endothelial growth factors, VEGFs, we investigated the role of a particular VEGF, VEGF-A, on islet vascularization and islet function. By deleting VEGF-A in the mouse pancreas, we show that endocrine cells signal back to the adjacent endothelial cells to induce the formation of a dense network of fenestrated capillaries in islets. Interestingly, VEGF-A is not required for the development of all islet capillaries. However, the few remaining capillaries found in the VEGF-A-deficient islets are not fenestrated and contain an unusual number of caveolae. In addition, glucose tolerance tests reveal that the VEGF-A-induced capillary network is not strictly required for blood glucose control but is essential for fine-tuning blood glucose regulation. In conclusion, we speculate that islet formation takes place in two sequential steps: in the first step, signals from blood vessel endothelium induce islet formation next to the vessels, and in the second step, the islets signal to the endothelium. The second step involves paracrine VEGF-A signaling to elaborate the interaction of islets with the circulatory system.  相似文献   

9.
The different members of the vascular endothelial growth factor (VEGF) family act as key regulators of endothelial cell function controlling vasculogenesis, angiogenesis, vascular permeability and endothelial cell survival. In this study, we have functionally characterized a novel member of the VEGF family, designated VEGF-E. VEGF-E sequences are encoded by the parapoxvirus Orf virus (OV). They carry the characteristic cysteine knot motif present in all mammalian VEGFs, while forming a microheterogenic group distinct from previously described members of this family. VEGF-E was expressed as the native protein in mammalian cells or as a recombinant protein in Escherichia coli and was shown to act as a heat-stable, secreted dimer. VEGF-E and VEGF-A were found to possess similar bioactivities, i.e. both factors stimulate the release of tissue factor (TF), the proliferation, chemotaxis and sprouting of cultured vascular endothelial cells in vitro and angiogenesis in vivo. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation and a biphasic rise in free intracellular Ca2+ concentration, whilst in contrast to VEGF-A, VEGF-E did not bind to VEGF receptor-1 (Flt-1). VEGF-E is thus a potent angiogenic factor selectively binding to VEGF receptor-2. These data strongly indicate that activation of VEGF receptor-2 alone can efficiently stimulate angiogenesis.  相似文献   

10.
11.
Vascular endothelial growth factors (VEGFs) constitute a family of six polypeptides, VEGF-A, -B, -C, -D, -E and PlGF, that regulate blood and lymphatic vessel development. VEGFs specifically bind to three type V receptor tyrosine kinases (RTKs), VEGFR-1, -2 and -3, and to coreceptors such as neuropilins and heparan sulfate proteoglycans (HSPG). VEGFRs are activated upon ligand-induced dimerization mediated by the extracellular domain (ECD). A study using receptor constructs carrying artificial dimerization-promoting transmembrane domains (TMDs) showed that receptor dimerization is necessary, but not sufficient, for receptor activation and demonstrates that distinct orientation of receptor monomers is required to instigate transmembrane signaling. Angiogenic signaling by VEGF receptors also depends on cooperation with specific coreceptors such as neuropilins and HSPG. A number of VEGF isoforms differ in binding to coreceptors, and ligand-specific signal output is apparently the result of the specific coreceptor complex assembled by a particular VEGF isoform. Here we discuss the structural features of VEGF family ligands and their receptors in relation to their distinct signal output and angiogenic potential.  相似文献   

12.
The vascular endothelial growth factor (VEGF) family is involved in angiogenesis, and therefore VEGFs are considered as targets for anti-angiogenic therapeutic strategies against cancer. However, the physiological functions of VEGFs in quiescent tissues are unclear and may interfere with such systemic therapies. In pathological conditions, increased levels of expression of the VEGF receptors VEGFR-1, VEGFR-2, and VEGFR-3 accompany VEGF activity. In this study we investigated normal human and monkey tissues for expression patterns of these receptors. Immunohistochemical staining methods at the light and electron microscopic level were applied to normal human and monkey tissue samples, using monoclonal antibodies (MAbs) against the three VEGFRs and anti-endothelial MAbs PAL-E and anti-CD31 to identify blood and lymph vessels. In human and monkey, similar distribution patterns of the three VEGFRs were found. Co-expression of VEGFR-1, -2, and -3 was observed in microvessels adjacent to epithelia in the eye, gastrointestinal mucosa, liver, kidney, and hair follicles, which is in line with the reported preferential expression of VEGF-A in some of these epithelia. VEGFR-1, -2, and -3 expression was also observed in blood vessels and sinusoids of lymphoid tissues. Furthermore, VEGFR-1, but not VEGFR-2 and -3, was present in microvessels in brain and retina. Electron microscopy showed that VEGFR-1 expression was restricted to pericytes and VEGFR-2 to endothelial cells in normal vasculature of tonsils. These findings indicate that VEGFRs have specific distribution patterns in normal tissues, suggesting physiological functions of VEGFs that may be disturbed by systemic anti-VEGF therapy. One of these functions may be involvement of VEGF in paracrine relations between epithelia and adjacent capillaries.  相似文献   

13.
Mouse embryogenesis is dose sensitive to vascular endothelial growth factor-A (VEGF-A), and mouse embryos partially deficient in VEGF-A die in utero because of severe vascular defects. In this study, we investigate the possible causes that underlie this phenomenon. Although the development of vascular defects in VEGF-A-deficient embryos seems to suggest that endothelial differentiation depends on the presence of a sufficient level of VEGF-A, we were surprised to find that endothelial differentiation per se is insensitive to a significant loss of VEGF-A activity. Instead, the development of the multipotent mesenchymal cells, from which endothelial progenitors arise in the yolk sac, is most highly dependent on VEGF-A. As a result of VEGF-A deficiency, dramatically fewer multipotent mesenchymal cells are generated in the prospective yolk sac. However, among the small number of mesenchymal cells that do enter the prospective yolk sac, endothelial differentiation occurs at a normal frequency. In the embryo proper, vasculogenesis is initiated actively in spite of a significant VEGF-A deficiency, but the subsequent steps of vascular development are defective. We conclude that a full-level VEGF-A activity is not critical for endothelial specification but is important for two distinct processes before and after endothelial specification: the development of the yolk sac mesenchyme and angiogenic sprouting of blood vessels.  相似文献   

14.
VEGF-receptor signal transduction   总被引:32,自引:0,他引:32  
The vascular endothelial growth factor (VEGF) family of ligands and receptors has been the focus of attention in vascular biology for more than a decade. There is now a consensus that the VEGFs are crucial for vascular development and neovascularization in physiological and pathological processes in both embryo and adult. This has facilitated a rapid transition to their use in clinical applications, for example, administration of VEGF ligands to enhance vascularization of ischaemic tissues and, conversely, inhibitors of VEGF-receptor function in anti-angiogenic therapy. More recent data indicate essential roles for the VEGFs in haematopoietic cell function and in lymphangiogenesis.  相似文献   

15.
The proangiogenic members of VEGF family and related receptors play a central role in the modulation of pathological angiogenesis. Recent insights indicate that, due to the strict biochemical and functional relationship between VEGFs and related receptors, the development of a new generation of agents able to target contemporarily more than one member of VEGFs might amplify the antiangiogenic response representing an advantage in term of therapeutic outcome. To identify molecules that are able to prevent the interaction of VEGFs with related receptors, we have screened small molecule collections consisting of >100 plant extracts. Here, we report the isolation and identification from an extract of the Malian plant Chrozophora senegalensis of the biflavonoid amentoflavone as an antiangiogenic bioactive molecule. Amentoflavone can to bind VEGFs preventing the interaction and phosphorylation of VEGF receptor 1 and 2 (VEGFR-1,VEGFR-2) and to inhibit endothelial cell migration and capillary-like tube formation induced by VEGF-A or placental growth factor 1 (PlGF-1) at low μm concentration. In vivo, amentoflavone is able to inhibit VEGF-A-induced chorioallantoic membrane neovascularization as well as tumor growth and associated neovascularization, as assessed in orthotropic melanoma and xenograft colon carcinoma models. In addition structural studies performed on the amentoflavone·PlGF-1 complex have provided evidence that this biflavonoid effectively interacts with the growth factor area crucial for VEGFR-1 receptor recognition. In conclusion, our results demonstrate that amentoflavone represents an interesting new antiangiogenic molecule that is able to prevent the activity of proangiogenic VEGF family members and that the biflavonoid structure is a new chemical scaffold to develop powerful new antiangiogenic molecules.  相似文献   

16.
Signal transduction by vascular endothelial growth factor receptors   总被引:2,自引:0,他引:2  
VEGFs (vascular endothelial growth factors) control vascular development during embryogenesis and the function of blood vessels and lymphatic vessels in the adult. There are five related mammalian ligands, which act through three receptor tyrosine kinases. Signalling is modulated through neuropilins, which act as VEGF co-receptors. Heparan sulfate and integrins are also important modulators of VEGF signalling. Therapeutic agents that interfere with VEGF signalling have been developed with the aim of decreasing angiogenesis in diseases that involve tissue growth and inflammation, such as cancer. The present review will outline the current understanding and consequent biology of VEGF receptor signalling.  相似文献   

17.
VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments.  相似文献   

18.
PET (pre-eclamptic toxaemia), characterized by pregnancy-related hypertension and proteinuria, due to widespread endothelial dysfunction, is a primary cause of maternal morbidity. Altered circulating factors, particularly the VEGF (vascular endothelial growth factor) family of proteins and their receptors, are thought to be key contributors to this disease. Plasma from patients with PET induces numerous cellular and physiological changes in endothelial cells, indicating the presence of a circulating imbalance of the normal plasma constituents. These have been narrowed down to macromolecules of the VEGF family of proteins and receptors. It has been shown that responses of endothelial cells in intact vessels to plasma from patients with pre-eclampsia is VEGF-dependent. It has recently been shown that this may be specific to the VEGF???b isoform, and blocked by addition of recombinant human PlGF (placental growth factor). Taken together with results that show that sVEGFR1 (soluble VEGF receptor 1) levels are insufficient to bind VEGF-A in human plasma from patients with pre-eclampsia, and that other circulating macromolecules bind, but do not inactivate, VEGF-A, this suggests that novel hypotheses involving altered bioavailability of VEGF isoforms resulting from reduced or bound PlGF, or increased sVEGFR1 increasing biological activity of circulating plasma, could be tested. This suggests that knowing how to alter the balance of VEGF family members could prevent endothelial activation, and potentially some symptoms, of pre-eclampsia.  相似文献   

19.
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号