首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cartilage and bone degradation, observed in human rheumatoid arthritis (RA), are caused by aberrant expression of proteinases, resulting in an imbalance of these degrading enzymes and their inhibitors. However, the role of the individual proteinases in the pathogenesis of degradation is not yet completely understood. Murine antigen-induced arthritis (AIA) is a well-established animal model of RA. We investigated the time profiles of expression of matrix metalloproteinase (MMP), cathepsins, tissue inhibitors of matrix metalloproteinases (TIMP) and cystatins in AIA. For primary screening, we revealed the expression profile with Affymetrix oligonucleotide chips. Real-time polymerase chain reaction (PCR) analyses were performed for the validation of array results, for tests of more RNA samples and for the completion of the time profile. For the analyses at the protein level, we used an MMP fluorescence activity assay and zymography. By a combination of oligonucleotide chips, real-time PCR and zymography, we showed differential expressions of several MMPs, cathepsins and proteinase inhibitors in the course of AIA. The strongest dysregulation was observed on days 1 and 3 in the acute phase. Proteoglycan loss analysed by safranin O staining was also strongest on days 1 and 3. Expression of most of the proteinases followed the expression of pro-inflammatory cytokines. TIMP-3 showed an expression profile similar to that of anti-inflammatory interleukin-4. The present study indicates that MMPs and cathepsins are important in AIA and contribute to the degradation of cartilage and bone.  相似文献   

2.
Lipid-laden monocyte/macrophages in atherosclerotic plaques can produce a range of proteinases capable of degrading components of the plaque extracellular matrix, an event that may weaken plaques, rendering them vulnerable to rupture. The effects of differentiation from monocytes to macrophages and exposure to mildly oxidized LDL (Ox-LDL) on the expression of a range of proteinases and their inhibitors were assessed in the human THP-1 cell line. Of 56 proteinases/inhibitors investigated, 17 were upregulated during macrophage differentiation, including several matrix metalloproteinases (MMPs) and cathepsins along with their native inhibitors. Similarly, expression of matrix-degrading proteinases was also increased during differentiation of human primary macrophages. In conjunction, the proteolytic capacity of the cells increased, as assessed by substrate zymography. Subsequent exposure of differentiated THP-1 cells to mildly Ox-LDL increased the expression of a control gene (adipocyte lipid binding protein) and increased the activity of nuclear factor-kappaB and activator protein-1 in serum-free conditions but did not significantly affect the expression of any of the proteinases or inhibitors investigated. These results indicate that in this model macrophage differentiation, rather than exposure to Ox-LDL, has a more important effect on the expression of genes involved in extracellular matrix remodeling.  相似文献   

3.
Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are involved in tissue remodeling by mediating degradation of extracellular matrix components in both physiology and pathology. As MMPs appear to play a key role in the degradation of cartilage matrix in the progression of arthritic disease, MMPs are considered as potential therapeutic targets. The effect of chondroitin sulfate A (CSA) on MMPs in type II collagen-induced experimental arthritis was studied. The anti-arthritic effect of CSA was evidenced by a decrease in marker activities like lysosomal beta-hexosaminidase and beta-glucuronidase. Arthritic animals showed significantly higher activity of MMP2 and MMP9 and increased levels of other MMPs, including MMP3 and MT-1 MMP in cartilage and serum. Treatment with CSA significantly decreased the activity of MMPs, particularly MMP9 in serum and synovial effusate and cartilage. The effect of CSA was further studied by fragmenting CSA into low-molecular-weight oligosaccharides. The oligosaccharide-treated animals showed considerably lower MMP activity (particularly MMP9) compared with arthritic controls. The CSA (and the oligosaccharides derived from it) not only reduced the activity of MMPs but also decreased the protein level expression of MMPs, indicating that the production of MMPs is affected. These results indicate that the antiarthritic effect of CSA involves down-regulation of MMPs, which are critically involved in the progression of arthritic disease.  相似文献   

4.
Bone matrix turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor type-1 (PAI-1). We previously demonstrated that 1.0g/cm(2) of compressive force was an optimal condition for inducing bone formation by osteoblastic Saos-2 cells. Here, we examined the effect of mechanical stress on the expression of MMPs, TIMPs, tPA, uPA, and PAI-1 in Saos-2 cells. The cells were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and with or without continuously compressive force (0.5-3.0g/cm(2)) for up to 24h. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 gene expression were estimated by determining the mRNA levels using real-time PCR, and the protein levels were determined using ELISA. The expression levels of MMP-1, MMP-2, MMP-14, and TIMP-1 markedly exceeded the control levels at 1.0g/cm(2) of compressive force, whereas the expression levels of MMP-3, MMP-13, TIMP-2, TIMP-3, TIMP-4, tPA, uPA, and PAI-1 markedly exceeded the control levels at 3.0g/cm(2). These results suggest that mechanical stress stimulates bone matrix turnover by increasing these proteinases and inhibitors, and that the mechanism for the proteolytic degradation of bone matrix proteins differs with the strength of the mechanical stress.  相似文献   

5.
Liu CH  Wu PS 《Biotechnology letters》2006,28(21):1725-1730
There is little information available on the proteases expressed by human embryonic kidney (HEK) cells, which are often used for expression of recombinant proteins and production of adenovirus vector. The expression profile of proteases in HEK cell line was investigated using zymography, mRNA analysis, western blotting and protein array. The major protease was gelatinase A [or matrix metalloproteinase (MMP)-2]. Beside, other MMPs, such as MMP-1, -2, -3, -8, -9, -10, -13 and membrane type (MT) 1- and 3−MMP, as well as tissue inhibitors of metalloproteinase (TIMP)-1, -2 and -3, were also expressed by HEK cells. Characterization of MMP and TIMP profiles expressed by HEK cells provides the basis for degradation control of recombinant protein and adenovirus vector during culture and purification processes.  相似文献   

6.
Extracellular matrix (ECM) molecules are known to play a pivotal role in morphogenesis of the secondary palate, and changes in their composition and distribution, not attributable to changes in synthesis, are known to occur during palatogenesis. The present study was undertaken to determine if the enzymes responsible for mediating their degradation, the matrix metalloproteinases (MMP), and their specific inhibitors, the tissue inhibitors of metalloproteinases (TIMP), are temporospatially regulated during murine palatal shelf morphogenesis. Palatal shelves were harvested at gestational days (gd) 12, 13 and 14. MMPs were identified by gelatin zymography, with and without inhibitors, and the identity of specific bands confirmed by Western blot analysis. TIMPs were identified by reverse zymography. MMP and TIMP messages were detected using RT-PCR with specific primers to MMPs 2, 3, 7, 9 and 13 and TIMPs 1 and 2. Zymography revealed bands of molecular weights corresponding to MMPs 2, 7, 9 and 13 at all ages examined; the intensity of these bands increased with developmental age. Western blot analysis established the presence of MMP-3 and its developmental variation in expression. RT-PCR demonstrated the presence of mRNA for all MMPs and TIMP at all sampling times and all but MMP-2 showed developmental variation. Whereas increases in mRNA were detected for MMPs 3, 9, and 13, MMP-7 mRNA decreased between gd 12 and 14. The results of this study demonstrate that MMPs 2, 3, 7, 9 and 13 and TIMPs 1 and 2 and their messages are present during the course of palatal shelf remodelling and that their expression is temporally regulated.  相似文献   

7.
c-Fos/AP-1 controls the expression of inflammatory cytokines and matrix-degrading matrix metalloproteinases (MMPs) important in arthritis via promoter AP-1 binding motif. Among inflammatory cytokines, IL-1β is the most important inducer of a variety of MMPs, and mainly responsible for cartilage breakdown and osteoclastogenesis. IL-1β and c-Fos/AP-1 influence each other’s gene expression and activity, resulting in an orchestrated cross-talk that is crucial to arthritic joint destruction, where TNFα can act synergistically with them. While how to stop the degradation of bone and cartilage, i.e., to control MMP, has long been the central issue in the research of rheumatoid arthritis (RA), selective inhibition of c-Fos/AP-1 does resolve arthritic joint destruction. Thus, the blockade of IL-1β and/or c-Fos/AP-1 can be promising as an effective therapy for rheumatoid joint destruction in addition to the currently available TNFα blocking agents that act mainly on arthritis.  相似文献   

8.
We measured and compared the activities of various kinds of proteinases, such as cysteine, serine, aspartic, and metalloproteinases, in synovial fluids of 16 patients with rheumatoid arthritis (RA) and 18 patients with osteoarthritis (OA). More than 19-fold higher activity of cathepsin B and about 6-fold higher activity of prolylendopeptidase, compared to those of OA, were accumulated in RA fluid. Moreover, levels of cathepsins B and S using the corresponding sandwich enzyme immunoassays were statistically higher in RA fluid than those in OA. Significant amounts of 41-kDa and 35-kDa procathepsin L were detected in RA fluid using gelatin zymography, while 41-kDa enzyme alone was detected in OA. Cathepsin B in RA fluid could degrade collagen, and this degradation was suppressed by the addition of CA-074, a specific inhibitor of cathepsin B. Therefore, cathepsin B may participate in joint destruction of RA, and its inhibitor may be effective for RA care.  相似文献   

9.
The lysosomal cysteine proteinases cathepsins B and L are known to play an important role in the invasive growth of tumor cells, but their association with angiogenesis has been less well studied. The aim of this study was to determine the possible role of endothelial cell-associated cathepsins B and L in induced capillary growth in the aorta ring model of angiogenesis. Specific inhibitors of cysteine proteinases did not inhibit capillary growth in aorta ring culture and only slightly inhibited the degradation of surrounding collagen. In contrast, strong inhibition of both processes by the matrix metalloproteinase inhibitor BB-94 was observed, indicating the importance of endogenous MMP production in angiogenesis. In support of this finding, we demonstrated a significant increase in endogenous endothelial mRNA of MMP2, but not of cathepsins B and L, in proliferating primary human dermal microvascular endothelial cells (HMVEC-d) in culture. However, MMP2 mRNA expression was increased only when the cells were embedded in collagen but not when they were grown on plastic, regardless of the addition of the growth factors VEGF or bFGF. Moreover, on plastic the impairment of MMP2 induction by growth factors was observed. The differential effect of growth factors implies the crosstalk with integrin signaling as a consequence of binding to the different matrix. This study suggests that endothelial cell-associated cathepsins B and L are not involved in the invasive growth of capillaries from existing blood vessels and that the presence of collagen is necessary for MMP2 expression in endothelial cells.  相似文献   

10.
Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.  相似文献   

11.
12.
We examined the role of matrix metalloproteinases (MMPs), tissue inhibitors of MMP (TIMPs), and plasminogen activator (PA) in transmyocardial laser revascularization (TMLR)-induced angiogenesis. TMLR was accomplished with a carbon dioxide laser in seven dogs whose left anterior descending coronary artery (LAD) was ligated. Seven control dogs underwent only LAD ligation, and four dogs underwent a sham operation, consisting only of a left thoracotomy. Two weeks later, transmural myocardial samples were harvested from the distributions of the LAD and the left circumflex artery for substrate zymography, immunohistochemical staining, and in situ zymography. MMP-1, MMP-2, TIMP-1, TIMP-2, and urokinase-type PA levels in the distribution of the LAD were higher in the laser group than in the control or sham group. Counts of von Willebrand factor-positive microvessels and smooth muscle alpha-actin-positive arterioles demonstrated that the angiogenesis and ateriogenesis was promoted in the laser group and correlated directly with the number of MMP-stained microvessels. We conclude that TMLR induces the expression of MMPs, TIMPs, and urokinase-type PA and that these proteinases play an important role in angiogenesis after TMLR.  相似文献   

13.
Fibroblast migration, proliferation, extracellular matrix protein synthesis and degradation, all of which play important roles in inflammation, are themselves induced by various growth factors and cytokines. Less is known about the interaction of these substances on lung fibroblast function in pulmonary fibrosis. The goal of this study was to investigate the effects of PDGF alone and in combination with IL-1beta and TNF-alpha on the production of human lung fibroblast matrix metalloproteinases, proliferation, and the chemotactic response. The assay for MMPs activity against FITC labeled type I and IV collagen was based on the specificity of the enzyme cleavage of collagen. Caseinolytis and gelatinolytic activities of secreted proteinases were analyzed by zymography. Fibronectin in conditioned media was measured using human lung fibronectin enzyme immunoassay. Cell proliferation was measured by 3H-Thymidine incorporation assay. Cell culture supernatants were tested for PGE2 content by ELISA. Chemotactic activity was measured using the modified Boyden chamber. Matrix metalloproteinase assay indicated that IL-1beta, TNF-alpha and PDGF induced intestitial collagenase (MMP-1) production. MMP assay also indicated that IL-1beta and TNF-alpha had inhibitory effects on MMP-2,9(gelatinaseA,B) production. Casein zymography confirmed that IL-1beta stimulated stromlysin (matrix metalloproteinase 3; MMP-3) and gelatin zymography demonstrated that TNF-alpha induced MMP-9 production in human lung fibroblast, whereas PDGF alone did not. PDGF in combination with IL-1beta and TNF-alpha induced MMP-3 and MMP-9 activity, as demonstrated by zymography. PDGF stimulated lung fibroblast proliferation in a concentration-dependent manner, whereas IL-1beta and TNF-alpha alone had no effect. In contrast, the proliferation of human lung fibroblasts by PDGF was inhibited in the presence of IL-1beta and TNF-alpha, and this inhibition was not a consequence of any elevation of PGE2. PDGF stimulated fibroblast chemotaxis in a concentration-dependent manner, and this stimulation was augmented by combining PDGF with IL-1beta and TNF-alpha. These findings suggested that PDGF differentially regulated MMPs production in combination with cytokines, and further that MMP assay and zymography had differential sensitivity for detecting MMPs. The presence of cytokines with PDGF appears to modulate the proliferation and chemotaxis of human lung fibroblasts.  相似文献   

14.
Data in the literature suggest that site-specific differences exist in the skeleton with respect to digestion of bone by osteoclasts. Therefore, we investigated whether bone resorption by calvarial osteoclasts (intramembranous bone) differs from resorption by long bone osteoclasts (endochondral bone). The involvement of two major classes of proteolytic enzymes, the cysteine proteinases (CPs) and matrix metalloproteinases (MMPs), was studied by analyzing the effects of selective low molecular weight inhibitors of these enzymes on bone resorption. Mouse tissue explants (calvariae and long bones) as well as rabbit osteoclasts, which had been isolated from both skeletal sites and subsequently seeded on bone slices, were cultured in the presence of inhibitors and resorption was analyzed. The activity of the CP cathepsins B and K and of MMPs was determined biochemically (CPs and MMPs) and enzyme histochemically (CPs) in explants and isolated osteoclasts. We show that osteoclastic resorption of calvarial bone depends on activity of both CPs and MMPs, whereas long bone resorption depends on CPs, but not on the activity of MMPs. Furthermore, significantly higher levels of cathepsin B and cathepsin K activities were expressed by long bone osteoclasts than by calvarial osteoclasts. Resorption of slices of bovine skull or cortical bone by osteoclasts isolated from long bones was not affected by MMP inhibitors, whereas resorption by calvarial osteoclasts was inhibited. Inhibition of CP activity affected the resorption by the two populations of osteoclasts in a similar way. We conclude that this is the first report to show that significant differences exist between osteoclasts of calvariae and long bones with respect to their bone resorbing activities. Resorption by calvarial osteoclasts depends on the activity of CPs and MMPs, whereas resorption by long bone osteoclasts depends primarily on the activity of CPs. We hypothesize that functionally different subpopulations of osteoclasts, such as those described here, originate from different sets of progenitors.  相似文献   

15.
16.
In addition to their stimulating function on osteoclastic bone resorption, bone resorptive factors may regulate proteinases and related factors in osteoblastic cells to degrade bone matrix proteins. This study investigated the regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by bone resorptive factors in the cultures of mouse osteoblastic MC3T3-E1 cells, mouse primary osteoblastic (POB) cells, and neonatal mouse calvariae. Expression of either MMP-2, -3, -9, -11, -13, and -14 or TIMP-1, -2, and -3 was detected in MC3T3-E1 cells and POB cells. When the bone resorptive factors parathyroid hormone, 1,25-dihydroxyvitamin D(3), prostaglandin E(2), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha) were added to the cell cultures, MMP-13 mRNA levels were found predominantly to increase by all resorptive factors in the three cultures. mRNA levels of either MMP-3 and -9 or TIMP-1 and -3 were found to increase mainly by the cytokines IL-1beta and TNF-alpha. BB94, a nonselective MMP inhibitor, neutralized the (45)Ca release stimulated by these resorptive factors to an extent similar to that of calcitonin, strongly suggesting that bone resorptive factors function at least partly through MMP formation. We propose that MMP-13 mRNA expression in osteoblastic cells may play an important role in stimulating matrix degradation by both systemic and local resorptive factors, whereas either MMP-3 and -9 or TIMP-1 and -3 might modulate matrix degradation by local cytokines only.  相似文献   

17.
The relative expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) is an important determinant in trophoblast invasion of the uterus and tumor invasion and metastasis. Our previous studies have shown that low oxygen levels increase the in vitro invasiveness of trophoblast and tumor cells. The present study examined whether changes in oxygen levels affect TIMP and MMP expression by cultured trophoblast and breast cancer cells. Reverse zymographic analysis demonstrated reduced TIMP-1 protein secretion by HTR-8/SVneo trophoblast cells as well as MDA-MB-231 and MCF-7 breast carcinoma cells cultured in 1% vs 20% oxygen for 24 h. While gelatin zymography revealed no changes in the levels of MMP-9 secreted by HTR-8/SVneo trophoblasts cultured under various oxygen concentrations for 24 h, human MDA-MB-231 breast carcinoma cells displayed increased MMP-9 secretion and human MCF-7 breast cancer cells exhibited reduced secretion of this enzyme when cultured under similar conditions. In contrast, MMP-2 levels remained unchanged in all cultures incubated under similar conditions. Western blot analysis of MMP-9 protein in cell extracts confirmed the results of zymography. To assess the contribution of enhanced MMP activity to hypoxia-induced invasion, the effect of an MMP inhibitor (llomastat) on the ability of MDA-MB-231 cells to penetrate reconstituted extracellular matrix (Matrigel) was examined. Results showed that MMP inhibition significantly decreased the hypoxic upregulation of invasion by these cells. These findings indicate that the increased cellular invasiveness observed under reduced oxygen conditions may be due in part to a shift in the balance between MMPs and their inhibitors favoring increased MMP activity.  相似文献   

18.
There is strong evidence that matrix metalloproteinases (MMPs) play a crucial role during osteogenesis and bone remodelling. Their synthesis by osteoblasts has been demonstrated during osteoid degradation prior to resorption of mineralised matrix by osteoclasts and their activities are regulated by tissue inhibitors of metalloproteinases (TIMPs). For this study we developed and utilised specific polyclonal antibodies to assess the presence of collagenase (MMP13), stromelysin 1 (MMP3), gelatinase A (MMP2), gelatinase B (MMP9) and TIMP-2 in both freshly isolated neonatal mouse calvariae and tissues cultured with and without bone-resorbing agents. Monensin was added towards the end of the culture period in order to promote intracellular accumulation of proteins and facilitate antigen detection. In addition, bone sections were stained for the osteoclast marker, tartrate-resistant acid phosphatase (TRAP). In uncultured tissues the bone surfaces had isolated foci of collagenase staining, and cartilage matrix stained for gelatinase B (MMP9) and TIMP-2. Calvariae cultured for as little as 3 h with monensin revealed intracellular staining for MMPs and TIMP-2 in mesenchymal tissues, as well as in cells lining the bone plates. The addition of cytokines to stimulate bone resorption resulted in pronounced TRAP activity along bone surfaces, indicating active resorption. There was a marked upregulation of enzyme synthesis, with matrix staining for collagenase and gelatinase B observed in regions of eroded bone. Increased staining for TIMP-2 was also observed in association with increased synthesis of MMPs. The new antibodies to murine MMPs should prove valuable in future studies of matrix degradation.  相似文献   

19.

Introduction  

Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients share many similarities with transformed cancer cells, including spontaneous production of matrix metalloproteinases (MMPs). Altered or chronic activation of proto-oncogenic Ras family GTPases is thought to contribute to inflammation and joint destruction in RA, and abrogation of Ras family signaling is therapeutic in animal models of RA. Recently, expression and post-translational modification of Ras guanine nucleotide releasing factor 1 (RasGRF1) was found to contribute to spontaneous MMP production in melanoma cancer cells. Here, we examine the potential relationship between RasGRF1 expression and MMP production in RA, reactive arthritis, and inflammatory osteoarthritis synovial tissue and FLS.  相似文献   

20.
The occurrence of neutrophils at the pannus‐cartilage border is an important phenomenon for understanding the pathogenesis of rheumatoid arthritis (RA). Matrix metalloproteinases (MMPs) are predominant enzymes responsible for the cartilage degradation. The present article studied the expression of CD147 on neutrophils and its potential role in neutrophil chemotaxis, MMPs production and the invasiveness of fibroblast‐like synoviocytes (FLS). The results of flow cytometry revealed that the mean fluorescence intensity of CD147 expression on neutrophils of peripheral blood from RA patients was higher than that in healthy individual. The potential role of CD147 in cyclophilin A (CyPA)‐mediated cell migration was studied using chemotaxis assay and it was found that the addition of anti‐CD147 antibody significantly decreased the chemotactic index of the neutrophils. Significantly elevated release and activation of MMPs were seen in the co‐culture of neutrophil and FLS compared with cultures of the cells alone. An increased number of cells invading through the filters in the invasion assays were also observed in the co‐cultured cells. The addition of anti‐CD147 antibody had some inhibitory effect, not only on MMP production but also on cell invasion in the co‐culture model. Our study demonstrates that the increased expression of CD147 on neutrophils in RA may be responsible for CyPA‐mediated neutrophil migration into the joints, elevated MMPs secretion and cell invasion of synoviocytes, all of which may contribute to the cartilage invasion and bone destruction of RA. Better knowledge of these findings will hopefully provide a new insight into the pathogenesis of RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号