首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Despite the ecologic and economic significance of the softshell clam (Mya arenaria), little is known about the humoral factors involved in its host defense mechanisms. Protease inhibitors, a group of proteins believed to play a role in host defense mechanisms against infections and proliferative diseases, have recently been identified in bivalve molluscs. In the present study we provide evidence for the presence of protease inhibitors in softshell clam plasma. Levels of protease inhibitory activities against the enzymes tested varied greatly, e.g. 1 μg of plasma protein inhibited 35.3±9.69 ng pepsin (aspartic protease), 4.9±1.45 ng papain (cysteine protease) and 3.1±0.88 ng trypsin (serine protease). On the contrary, the level of anti-metalloprotease (thermolysin) activities was much lower. The sensitivity to methylamine and the ability to protect trypsin from active site trypsin inhibitors provided evidence for the presence of an α2-macroglobulin-like molecule in softshell clam plasma. In the Chesapeake Bay widespread epizootics of disseminated sarcoma have been described in M. arenaria populations. The impact of this lethal proliferative disorder on clam defense responses has received little attention. In this study the effects of sarcoma progression on plasma protease inhibitory activities were, therefore, assessed. Clams with early stages of sarcoma showed a non-significant decrease in protease inhibitor levels. Clams with advanced stages of sarcoma showed a significant decrease in the ability to inhibit trypsin and papain, while the protease inhibitory activity levels against aspartic and metalloprotease were completely exhausted.  相似文献   

2.
Plasma concentrations of progesterone (P4), estradiol-17β (E2), estrone (E1) and estrone sulfate (E1S) were measured during gestation in eight guanacos kept in captivity. Gestational length was 346.1 ± 9.8 days. P4 plasma concentrations increased after ovulation and remained elevated until parturition. However, during the last 4 weeks of gestation, a gradual decrease from 4.17 × 1.17±1 nmol/L to 2.02 × 1.95±1 nmol/L on day 5 before parturition was observed, followed by a more abrupt final decline to baseline concentrations which were reached on the day after parturition. Mean E2 plasma concentrations started to increase during the eighth month of gestation, and were significantly elevated up to maximum concentrations of 484.7 × 1.21±1 pmol/L during the last 2 months of pregnancy. Concentrations returned to baseline during the last 2 days of gestation. An increase of E1S concentrations (p < 0.01) was observed in the eleventh month of gestation. Mean E1S concentrations remained rather constant during the last 3 weeks of gestation between 4 to 8 nmol/L until parturition, when a steep precipitous decline was observed. E1 concentrations were slightly elevated during the last 4 weeks of gestation, however, maximum concentrations did not exceed 1.5 nmol/L. The results show distinct species specific features of gestational steroid hormone profiles in the guanaco in comparison to domestic South American camelids, such as a more pronounced gradual prepartal decrease of P4 concentrations prior to the final decline to baseline, and clearly lesser E1S concentrations during the last 4 weeks of gestation, which lack a continuous prepartal increase.  相似文献   

3.
The aim of this work was to study comparatively the oxidative metabolism in gills and liver of a silverside, Odontesthes nigricans, in their natural environment, the Beagle Channel. Oxidative damage to lipids was evaluated by assessing TBARS and lipid radical content, in gills and liver. Gills showed a significantly higher degree of damage than liver. The content of α-tocopherol, β-carotene and catalase activity showed significantly higher values in the liver than in the gills. The ascorbyl radical (A) content showed no significant differences between gills and liver. The ascorbate (AH) content was 12 ± 2 and 159 ± 28 nmol/mg FW in gills and liver, respectively. Oxidative metabolism at the hydrophilic level was assessed as the ratio A/AH. The ratio A/AH was significantly different between organs, (6 ± 2)10− 5 and (5 ± 2)10− 6, for the gills and the liver, respectively. Both, lipid radical content/α-tocopherol content and lipid radical content/β-carotene content ratios were significantly higher in gills as compared to the values recorded for the liver, suggesting an increased situation of oxidative stress condition in the lipid phase of the gills. Taken as a whole, the O. nigricans liver exhibited a better control of oxidative damage than the gills, allowing minimization of intracellular damage when exposed to environmental stressing conditions.  相似文献   

4.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09 ± 0.02 μmol O2 h− 1 g− 1; summer: 0.31 ± 0.06 μmol O2 h− 1 g− 1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content / ascorbate content ratio (A / AH). The A / AH ratio showed minimum values in winter (3.7 ± 0.2 10− 5 AU) and increased in summer (18 ± 5 10− 5 AU). A similar pattern was observed for lipid radical content (122 ± 29 pmol mg− 1 fresh mass [FW] in winter and 314 ± 45 pmol mg− 1 FW in summer), iron content (0.99 ± 0.07 and 2.7 ± 0.6 nmol mg− 1 FW in winter and summer, respectively) and catalase activity (2.9 ± 0.2 and 7 ± 1 U mg− 1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe–MGD–NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

5.
Human α1-antitrypsin (AAT) was produced in the recombinant yeast Saccharomyces cerevisiae ATCC 20699 grown in batch and fed-batch culture. The final biomass concentration and antitrypsin concentration attained were 55 g·L−1 and 1.23 g·L−1, respectively, in the fed-batch. The maximum productivities of biomass and antitrypsin were 1.6 and > 0.04 g L−1h−1, respectively, or substantially greater than the highest productivity values reported in the past. For recovering the antitrypsin, the cell slurry was concentrated 4-fold (231 g·L−1 biomass, 122 min of processing) by cross-flow microfiltration and the cells were disrupted by bead milling (3 passes of 3 min total retention time). The cell homogenate was treated with aluminum chloride or PBS (pH 7) to aid separation of the cell debris by flocculation and sedimentation. The clarified cell homogenate was subjected to ammonium sulfate fractionation to precipitate the recombinant antitrypsin. The AAT precipitated at 45–75% saturation of ammonium sulfate, depending on the age of the homogenate. The crude AAT in the homogenate degraded at room temperature (25°C), with a zero order deactivation rate of 1.815 × 10−3 ± 3.43 × 10−4 g AAT L−1h−1.  相似文献   

6.
Activation of peroxisome proliferator activated receptor (PPAR)α and its protective role in cardiovascular function has been reported but the exact mechanism(s) involved is not clear. As we have shown that PPARα ligands increased nitric oxide (NO) production and cardiovascular function is controlled by a balance between NO and free radicals, we hypothesize that PPARα activation tilts the balance between NO and free radicals and that this mechanism defines the protective effects of PPARα ligands on cardiovascular system. Systolic blood pressure (SBP) was greater in PPARα knockout (KO) mice compared with its wild type (WT) litter mates (130 ± 10 mmHg versus 107 ± 4 mmHg). l-NAME (100 mg/L p.o.), the inhibitor of NO production abolished the difference between PPARα KO and WT mice. In kidney homogenates, tissue lipid hydroperoxide generation was greater in KO mice (11.8 ± 1.4 pM/mg versus 8.3 ± 0.6 pM/mg protein). This was accompanied by a higher total NOS activity (46 ± 6%, p < 0.05) and a 3 fold greater Ca2+-dependent NOS activity in kidney homogenates of untreated PPARα WT compared with the KO mice. Clofibrate, a PPARα ligand, increased NOS activity in WT but not KO mice. Bezafibrate (30 mg/kg) reduced SBP in conscious rats (19 ± 4%, p < 0.05), increased urinary NO excretion (4.06 ± 0.53–7.07 ± 1.59 μM/24 h; p < 0.05) and reduced plasma 8-isoprostane level (45.8 ± 15 μM versus 31.4 ± 8 μM), and NADP(H) oxidase activity (16 ± 5%). Implantation of DOCA pellet (20 mg s.c.) in uninephrectomized mice placed on 1% NaCl drinking water increased SBP by a margin that was markedly greater in KO mice (193 ± 13 mmHg versus 130 ± 12 mmHg). In the rat, DOCA increased SBP and NAD(P)H oxidase activity and both effects were diminished by clofibrate. In addition, clofibrate reduced ET-1 production in DOCA/salt hypertensive rats. Thus, apart from inhibition of ET-1 production, PPARα activation exerts protective actions in hypertension via a mechanism that involves NO production and/or inhibition of NAD(P)H oxidase activity.  相似文献   

7.
A novel raw starch degrading α-cyclodextrin glycosyltransferase (CGTase; E.C. 2.4.1.19), produced by Klebsiella pneumoniae AS-22, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The specific cyclization activity of the pure enzyme preparation was 523 U/mg of protein. No hydrolysis activity was detected when soluble starch was used as the substrate. The molecular weight of the pure protein was estimated to be 75 kDa with SDS-PAGE and gel filtration. The isoelectric point of the pure enzyme was 7.3. The enzyme was most active in the pH range 5.5–9.0 whereas it was most stable in the pH range 6–9. The CGTase was most active in the temperature range 35–50°C. This CGTase is inherently temperature labile and rapidly loses activity above 30°C. However, presence of soluble starch and calcium chloride improved the temperature stability of the enzyme up to 40°C. In presence of 30% (v/v) glycerol, this enzyme was almost 100% stable at 30°C for a month. The Km and kcat values for the pure enzyme were 1.35 mg ml−1 and 249 μM mg−1 min−1, respectively, with soluble starch as the substrate. The enzyme predominantly produced α-cyclodextrin without addition of any complexing agents. The conditions employed for maximum α-cyclodextrin production were 100 g l−1 gelatinized soluble starch or 125 g l−1 raw wheat starch at an enzyme concentration of 10 U g−1 of starch. The α:β:γ-cyclodextrins were produced in the ratios of 81:12:7 and 89:9:2 from gelatinized soluble starch and raw wheat starch, respectively.  相似文献   

8.
Oxidative deamination of putrescine, the precursor of polyamines, gives rise to γ-aminobutyraldehyde (ABAL). In this study an aldehyde dehydrogenase, active on ABAL, has been purified to electrophoretic homogeneity from rat liver cytoplasm and its kinetic behaviour investigated. The enzyme is a dimer with a subunit molecular weight of 51,000. It is NAD+-dependent, active only in the presence of sulphhydryl compounds and has a pH optimum in the range 7.3–8.4. Temperatures higher than 28°C promote slow activation and the process is favoured by the presence of at least one substrate. Km for aliphatic aldehydes decreases from 110 μM for ABAL and acetaldehyde to 2–3 μM for capronaldehyde. The highest relative V-values have been observed with ABAL (100) and isobutyraldehyde (64), and the lowest with acetaldehyde (14). Affinity for NAD+ is affected by the aldehyde present at the active site: Km for NAD+ is 70 μM with ABAL, 200 μM with isobutyraldehyde and capronaldehyde, and>800 μM with acetaldehyde. The kinetic behaviour at 37°C is quite complex; according to enzymatic models, NAD+ activates the enzyme (Kact 500 μM) while NADH competes for the regulatory site (Kin 70 μM). In the presence of high NAD+ concentrations (4 mM), ABAL promotes further activation by binding to a low-affinity regulatory site (Kact 10 mM). The data show that the enzyme is probably an E3 aldehyde dehydrogenase, and suggest that it can effectively metabolize aldehydes arising from biogenic amines.  相似文献   

9.
Total lipid content, lipid classes and fatty acid composition were studied in various tissues of the Antarctic clam Laternula elliptica in an early austral summer. A histological examination of the gonads revealed that most of the clams examined were spawning or ready to spawn. Lipid content was highest in gills (14.9% of tissue dry weight), followed by gonads (10.9%) and digestive glands (9.9%), and averaged 8.2% for the soft tissues. The overall lipid contents were relatively low compared to temperate bivalves at a similar reproductive stage. Lipid class composition in the total lipid of L. elliptica was quite similar to those of most marine bivalves at lower latitudes, being dominated by triacylglycerols (19.3–41.4% of total lipids) and phospholipids (18.9–28.3%) in most of the organs. Large amounts of triacylglycerol deposits in non-reproductive tissues, particularly in siphon and gill, indicate a potential role of lipid as maintenance energy reserve, although the low lipid contents suggest that lipid may not serve as an energy reserve for any food-limited periods. Fatty acid composition in L. elliptica was also typical of marine bivalves with predominance of 16:0 (26%) and 20:5n-3 (18%) acids. Total fatty acids from the soft tissues showed a moderate level of unsaturation (50.6%), and about 35% of the total fatty acids were polyunsaturated. These values were not significantly different from, or even lower than those of marine bivalves in warmer waters. However, the content of 20:5n-3 (18.2% of total fatty acids), which dominated n-3 polyunsaturated fatty acids, was similar to those reported for other marine bivalve species in temperate waters. The fatty acid composition of L. elliptica reflected dietary input of some microalgal species. The nanoflagellates Cryptomonas spp., which were reportedly rich in 16:0, 18:3n-3 and 20:5n-3, predominated in the water column during the present investigation. Accepted: 19 June 1999  相似文献   

10.
Epinephrine (EPI) is thought to act by stimulating adenylyl cyclase (ACase) and cAMP production through β-adrenoceptors in the liver of more primitive vertebrates. Recent observations, however, point to an involvement of α1-adrenoceptors in EPI action, at least in some fish species. The role of the α1- and β-adrenergic transduction pathways has been investigated in rainbow trout (Oncorhynchus mykiss) hepatic tissue. Radioligand-binding assays with the β-adrenergic antagonist 3H-CGP-12177 using hepatic membranes purified on a discontinuous sucrose gradient confirmed the presence of β-adrenoceptors (Kd0.36 nM, Bmax 8.61 fmol · mg−1 protein). We provide the first demonstration of α1-adrenoceptors in these same membranes; analysis of binding data with the α1-adrenergic antagonist 3H-prazosin demonstrated a single class of binding sites with a Kdof 15.4 nM and a Bmax of 75.2 fmol · mg−1 protein. There is a straight correlation between β-adrenoceptor occupancy, ACase activation and cAMP production. On the contrary, the role of inositol 1,4,5-trisphosphate (IP3) has to be elucidated; in fact, despite the presence of specific microsomal binding sites for IP3 (Kd 6.03 nM, Bmax 90.2 fmol · mg−1 protein), its cytosolic concentration was not modulated by EPI. On the other hand, we have previously shown in American eel and bullhead hepatocytes that α1-adrenergic agonists are able to increase intracellular concentrations of IP3 and Ca2+ and to activate glycogenolysis. These data suggest a marked variation in the liver of different fish both in terms of α1-binding sites affinity and of α1-adrenoceptor/IP3/Ca2+ transduction systems.  相似文献   

11.
Large blooms of the marine cyanobacterium Lyngbya majuscula in Moreton Bay, Australia (27°05′S, 153°08′E) have been re-occurring for several years. A bloom was studied in Deception Bay (Northern Moreton Bay) in detail over the period January–March 2000. In situ data loggers and field sampling characterised various environmental parameters before and during the L. majuscula bloom. Various ecophysiological experiments were conducted on L. majuscula collected in the field and transported to the laboratory, including short-term (2 h) 14C incorporation rates and long-term (7 days) pulse amplitude modulated (PAM) fluorometry assessments of photosynthetic capacity. The effects of L. majuscula on various seagrasses in the bloom region were also assessed with repeated biomass sampling. The bloom commenced in January 2000 following usual December rainfall events, water temperatures in excess of 24 °C and high light conditions. This bloom expanded rapidly from 0 to a maximum extent of 8 km2 over 55 days with an average biomass of 210 gdw−1 m−2 in late February, followed by a rapid decline in early April. Seagrass biomass, especially Syringodium isoetifolium, was found to decline in areas of dense L. majuscula accumulation. Dissolved and total nutrient concentrations did not differ significantly (P > 0.05) preceding or during the bloom. However, water samples from creeks discharging into the study region indicated elevated concentrations of total iron (2.7–80.6 μM) and dissolved organic carbon (2.5–24.7 mg L−1), associated with low pH values (3.8–6.7). 14C incorporation rates by L. majuscula were significantly (P < 0.05) elevated by additions of iron (5 μM Fe), an organic chelator, ethylenediaminetetra-acetic acid (5 μM EDTA) and phosphorus (5 μM PO4−3). Photosynthetic capacity measured with PAM fluorometry was also stimulated by various nutrient additions, but not significantly (P > 0.05). These results suggest that the L. majuscula bloom may have been stimulated by bioavailable iron, perhaps complexed by dissolved organic carbon. The rapid bloom expansion observed may then have been sustained by additional inputs of nutrients (N and P) and iron through sediment efflux, stimulated by redox changes due to decomposing L. majuscula mats.  相似文献   

12.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21‰ salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6 ± 4.9 U mg− 1 and K0.5 = 1.31 ± 0.05 mmol L− 1. Stimulation of K+-phosphatase activity by magnesium (Vmax = 125.3 ± 7.5 U mg− 1; K0.5 = 2.09 ± 0.06 mmol L− 1), potassium (Vmax = 134.2 ± 6.7 U mg− 1; K0.5 = 1.33 ± 0.06 mmol L− 1) and ammonium ions (Vmax = 130.1 ± 5.9 U mg− 1; K0.5 = 11.4 ± 0.5 mmol L− 1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI = 304.9 ± 18.3 μmol L− 1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the ≈2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar α-subunit expression in gill tissue from shrimps acclimated to 21‰ salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.  相似文献   

13.
A semi-micro assay was developed for the conjugation of 5α,6α-epoxy-cholestan-3β-ol (cholesterol α-oxide) with glutathione. The soluble supernatant of rat liver homogenate catalysed the reaction at a rate of 0.2–0.5 pmol.min−1 .mg protein−1 with 4μM cholesterol α-oxide, while the reaction in the presence of GSH alone was barely detectable. Enzymic activity in the soluble supernatant was due equally to the two forms of glutathione transferase B (100 pmol.min.mg protein−1), glutathione transferases AA, A, C and E being unreactive. The activity of purified glutathione transferase B was about 5-times that expected from the activity of the soluble supernatant. Complex enzyme kinetics were obtained suggestive of substrate inhibition.  相似文献   

14.
The psychrotolerant bacterium Shewanella sp. G5 was used to study differential protein expression on glucose and cellobiose as carbon sources in cold-adapted conditions. This strain was able to growth at 4 °C, but reached the maximal specific growth rate at 37 °C, exhibiting similar growing rates values with glucose (μ: 0.4 h−1) and cellobiose (μ: 0.48 h−1). However, it grew at 15 °C approximately in 30 h, with specific growing rates of 0.25 and 0.19 h−1 for cellobiose and glucose, respectively. Thus, this temperature was used to provide conditions related to the environment where the organism was originally isolated, the intestinal content of Munida subrrugosa in the Beagle Channel, Fire Land, Argentina. Cellobiose was reported as a carbon source more frequently available in marine environments close to shore, and its degradation requires the enzyme β-glucosidase. Therefore, this enzymatic activity was used as a marker of cellobiose catabolism. Zymogram analysis showed the presence of cold-adapted β-glucosidase activity bands in the cell wall as well as in the cytoplasm cell fractions. Two-dimensional gel electrophoresis of the whole protein pattern of Shewanella sp. G5 revealed 59 and 55 different spots induced by cellobiose and glucose, respectively. Identification of the quantitatively more relevant proteins suggested that different master regulation schemes are involved in response to glucose and cellobiose carbon sources. Both, physiological and proteomic analyses could show that Shewanella sp. G5 re-organizes its metabolism in response to low temperature (15 °C) with significant differences in the presence of these two carbon sources.  相似文献   

15.
Mu Z  Yang Z  Yu D  Zhao Z  Munger JS 《Mechanisms of development》2008,125(5-6):508-516
Gene deletion experiments have shown that the three TGFβ isoforms regulate distinct developmental processes. Recent work by our group and others showed that the integrins αvβ6 and αvβ8 activate latent forms of TGFβ1 and TGFβ3. This raises the possibility that TGFβ1 and TGFβ3 act redundantly in developmental processes where both isoforms are expressed and activation is by integrins. To investigate this issue, we generated mice with defective integrin-mediated TGFβ1 activation (Tgfb1RGE/RGE) that were also homozygous for a null mutation in the TGFβ3 gene. Tgfb1RGE/RGE; Tgfb3−/− mice have severely perturbed development of the brain vasculature that is highly similar to that in mice lacking αvβ8. Some Tgfb1RGE/RGE; Tgfb3+/− and Tgfb1RGE/RGE; Tgfb3+/+ mice have milder, background-dependent versions of the phenotype. In addition, we found that Tgfb3 gene status influences embryonic lethality due to TGFβ1 deficiency after limited backcrossing to the BALB/c background. Conversely, Tgfb1 gene status modifies the extent of palate fusion in Tgfb3−/− mice after limited backcrossing to the ICR background. Our results are consistent with a functional connection between TGFβ1 and TGFβ3 during development based on a shared mechanism of activation.  相似文献   

16.
Nitric oxide (NO) in bovine ovary has been characterized as one of the controllers of granulosa cells’ (GC) steroidogenesis and apoptosis. One of the pathways used by NO to have these effects is cGMP. The objectives of the present study were to verify the effect of sodium nitroprusside (SNP), a NO donor, on steroidogenesis, cell viability (mitochondrial activity) and GC cell cycle distribution and if this effect occurs by the NO-cGMP signaling pathway with the addition of SNP with or without 1H-[1,2,3] oxadiaziolo[4,3a]quinoxaline-1-one (ODQ), a selective soluble guanylate cyclase inhibitor. The antral GC from 3 to 5 mm diameter cattle follicles was cultured without treatment (control), with ODQ (10−4 M) and 10−5, 10−3 and 10−1 M SNP with or without ODQ for 24 h. Nitrate/nitrite (NO3/N02) concentrations were evaluated by Griess method, progesterone (P4) and 17β-estradiol (E2) concentrations by chemiluminescence, viability and cell cycle stage by MTT method (3-[4,5-dimethylthiazol-2yl]-2,3 dipheniltetrazolium bromide) and flow cytometry, respectively. Nitrate/nitrite concentration in culture medium increased (P < 0.05) in a dose-dependent manner according to SNP concentration added to the culture medium. The GC cultured without treatment, with ODQ and with 10−5 M SNP in the presence or absence of ODQ developed into cell aggregates and did not vary in cell viability (P > 0.05), while GC cultured with 10−3 and 10−1 M SNP with or without ODQ presented disorganized GC aggregates or did not develop into cell aggregates and also had substantially decreased cell viability (mitochondrial activity inhibition) and steroids synthesis (P < 0.05), and effects were not reversed with us of ODQ. Most GC cultured without treatment (control) or with ODQ, 10−5 and 10−3 M SNP with or without ODQ were in the G0/G1 (80–75%) stage and in a lesser proportion (20–25%) in the S + G2/M stage of the cell cycle, while the 10−1 M SNP treatment resulted in GC in G1 phase arrest. The treatment with 10−5 M SNP increased (P < 0.05) E2 synthesis and inhibited (P < 0.05) progesterone synthesis. The addition of ODQ reversed (P < 0.05) the stimulatory effect of 10−5 M SNP treatment on E2, but not on P4 synthesis (P > 0.05). These results demonstrated that E2 synthesis by antral GC from small follicles is modulated by lesser NO concentrations via the cGMP pathway, but not P4 while steroids inhibition cGMP pathway independent, mitochondrial damage and the interference on cell cycle progression caused by greater NO concentration can lead to cell death.  相似文献   

17.
This study evaluated the influence of diets supplemented with 500, 800, 1200 mg kg− 1 of vitamin C (ascorbic acid or AA) and vitamin E (α-tocopherol or α-T) on the physiological responses of pirarucu fed for 2 months. Weight and mortality were not affected by dietary vitamin type or their concentrations. Significant increase (p < 0.05) on the red blood cells count was obtained on treatments with 800 and 1200 mg AA kg− 1 and on the hemoglobin concentration on treatment with 500 mg α-T kg− 1 relatively to control. Mean corpuscular volume presented a significant decrease (p < 0.05) on treatment with 800 and 1200 mg AA kg−1 when compared to control. Mean corpuscular hemoglobin concentration was significantly high (p < 0.05) on treatment with 500 mg α-T kg− 1. Only in vitamin C treatments, we noticed a significant increase (p < 0.05) in the number of leucocytes relative to control. All fish in the vitamin-supplemented treatments, except 500 mg AA kg− 1, had high total protein values compared to control. Fish treated with 800 or 1200 mg α-T kg− 1 also showed increases in plasma glucose concentrations. Our results suggest that 800 and 1200 mg AA kg− 1 are probably the most suitable concentrations for pirarucu diets, although high vitamin E diets are not necessary for quantitative leucocyte increases for this species.  相似文献   

18.
γ-Aminobutyraldehyde dehydrogenase from Escherichia coli K-12 has been purified and characterized from cell mutants able to grow in putrescine as the sole carbon and nitrogen source. The enzyme has an Mr of 195 000±10 000 in its dimeric form with an Mr of 95 000±1000 for each subunit, a pH optimum at 5.4 in sodium citrate buffer, and does not require bivalent cations for its activity. Km values are 31.3±6.8 μM and 53.8±7.4 μM for Δ-1-pyrroline and NAD+, respectively. An inhibitory capacity for NADH is also shown using the purified enzyme.  相似文献   

19.
The four stereoisomers of the combined α- and β-adrenoceptor antagonist labetalol were separated and quantified at therapeutic concentrations by normal-phase high-pressure liquid chromatography using a chiral stationary phase and fluorescence detection. Drug in plasma or urine was recovered by solid-phase extraction with 83±5% efficiency. Limits of detection from biological samples (3 ml) were between 1.5–1.8 ng ml−1. Intra-day and inter-day variation at 25 ng ml−1 were ≤2.7% and ≤5.80% respectively for all stereoisomers. The assay was applied to an examination of the disposition of labetalol stereoisomers after a single oral dose of racemate to a human volunteer. Labetalol appears to undergo enantioselective metabolism leading to relatively low plasma concentrations of the pharmacologically active enantiomers.  相似文献   

20.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10−8 M and was half-maximal at 7.9±3.4·10−7M. The increase at 1·10−5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10−9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10−5 M dopamine was 2.3±0.9·10−6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10−7M and 4.7±1.6·10−7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10−6Mcis-flupenthixol, 2.7±0.4·10−5Mtrans-flupenthixol, >1·10−5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号