首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungicides are a class of pesticides which are used indiscriminately in large amounts and pose a serious threat to the environment. Propiconazole (PCZ) is a systemic foliar fungicide with a broad range of activity. The potential of this fungicide to induce toxicity has not been fully explored. The present study was designed to investigate the dose dependent neurotoxic effect of propiconazole (PCZ), with Channa punctata Bloch as a model organism. Effect of PCZ on the brain specific enzyme activity such as acetylcholinesterase (AChE), monoamine oxidase (MAO) and Na+-K+-ATPase was determined in the fish brain tissue exposed to sub-lethal concentrations (0.5 and 5 ppm) for 96 h. Also, levels of oxidative stress reflected by various enzymatic and non-enzymatic antioxidants were measured. Neurotransmitter (epinephrine) level was also assessed. PCZ exposure induced oxidative stress as reflected by the significant increase in fish brain lipid peroxidation and protein carbonyl content with decrease in reduced glutathione levels, as well as the significant inhibition of glutathione dependent metabolizing enzymes and CAT activities. In addition, AChE, MAO and Na+-K+-ATPase activities were significantly lowered along with reduction in epinephrine levels in PCZ exposed fishes than those of the control in a dose dependent manner. Also, histopathological alterations were observed in fish brain of the treated fishes. The results point towards the potential neurotoxicity in the fish caused by PCZ exposure but the application of these findings will need more detailed study before they can be established as special biomarkers for toxicity monitoring the aquatic environment.  相似文献   

2.
We investigated the effect of salinity on the relationship between Na+-K+-ATPase and sulfogalactosyl ceramide (SGC) in the basolateral membrane of rainbow trout (Oncorhynchus mykiss) gill epithelium. SGC has been implicated as a cofactor in Na+-K+-ATPase activity, especially in Na+-K+-ATPase rich tissues. However, whole-tissue studies have questioned this role in the fish gill. We re-examined SGC cofactor function from a gill basolateral membrane perspective. Nine SGC fatty acid species were quantified by tandem mass spectrometry (MS/MS) and related to Na+-K+-ATPase activity in trout acclimated to freshwater or brackish water (20 ppt). While Na+-K+-ATPase activity increased, the total concentration and relative proportion of SGC isoforms remained constant between salinities. However, we noted a negative correlation between SGC concentration and Na+-K+-ATPase activity in fish exposed to brackish water, whereas no correlation existed in fish acclimated to freshwater. Differential Na+-K+-ATPase/SGC sensitivity is discussed in relation to enzyme isoform switching, the SGC cofactor site model and saltwater adaptation.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

3.
The effect of long-term (30 days) exposure to PCZ (0.2, 50, and 500 μg l?1) on intestine-related biochemical markers in rainbow trout was investigated. Multiple biomarkers were measured, including digestive enzymes (proteolytic enzymes and amylase), antioxidant responses (TBARS, CP, SOD, CAT, GR and GPx) and energy metabolic parameters (RNA/DNA ratio, Na+-K+-ATPase). Exposure to 500 μg l?1 PCZ led to significantly inhibited (p < 0.01) proteolytic enzyme and amylase activity. Activities of the antioxidant enzymes SOD, CAT, and GPx gradually increased at lower PCZ concentrations (0.2 and 50 μg l?1). At the highest concentration (500 μg l?1), oxidative stress was apparent as significant higher (p < 0.05) lipid peroxidation and protein carbonyls, associated with an inhibition of antioxidant enzymes activity. Moreover, energy metabolic parameters (RNA/DNA ratio, Na+-K+-ATPase) were significantly inhibited (p < 0.01) in the intestines of fish exposed to 500 μg l?1 PCZ, compared with controls. We suggest that long-term exposure to PCZ could result in several responses in intestine-related biochemical markers, which potentially could be used as indicators for monitoring residual PCZ present in the aquatic environment.  相似文献   

4.
The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody α (H-300) raised against the human α1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 μmol gFM−1 h−1) than in those of L. vulgaris (31.8 ± 3.3 μmol gFM−1 h−1). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 μmolATP gFM−1 h−1, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.  相似文献   

5.
Physiological effects of exposure to silver (AgCln n−1; 250 μg Ag l−1 or 1000 μg Ag l−1) in seawater fish were investigated using adult starry flounders. While all fish survived up to 10 days in 250 μg Ag l−1, flounders started to die after day 4 in 1000 μg l−1. Dose-dependent increases in plasma and hepatic silver concentrations showed that silver was available for uptake. There were minimal negative effects on hematological parameters, acid-base status, and blood gases. Plasma ammonia showed a pronounced (three- to four-fold), but transient increase in flounders exposed to either 250 μg Ag l−1 or 1000 μg Ag l−1. Whole body ammonia and acid equivalent efflux measurements indicated that ammonia retention was due to a combination of stimulated production and inhibited excretion. In the 1000-μg Ag l−1 group there was a similar transient increase in plasma [magnesium], which was restored by day 4. In contrast, plasma chloride and sodium levels increased gradually towards the point when fish began to die. At 250 μg Ag l−1, the Na+/K+-ATPase activity of the intestine was unaffected but there was a two-fold increase in branchial Na+/K+-ATPase activity. The latter effect was interpreted as compensation for an elevated chloride and sodium load. The increases in plasma chloride and sodium concentrations were accompanied by a marked suppression of drinking, thereby indicating that acute silver toxicity was likely caused by a combination of elevated electrolyte concentrations and dehydration. Accepted: 9 June 1999  相似文献   

6.
7.
An in-depth understanding of the mechanisms underlying regulatory volume behavior in corneal epithelial cells has been in part hampered by the lack of adequate methodology for characterizing this phenomenon. Accordingly, we developed a novel approach to characterize time-dependent changes in relative cell volume induced by anisosmotic challenges in calcein-loaded SV40-immortalized human corneal epithelial (HCE) cells with a fluorescence microplate analyzer. During a hypertonic challenge, cells shrank rapidly, followed by a temperature-dependent regulatory volume increase (RVI), τc = 19 min. In contrast, a hypotonic challenge induced a rapid (τc = 2.5 min) regulatory volume decrease (RVD). Temperature decline from 37 to 24°C reduced RVI by 59%, but did not affect RVD. Bumetanide (50 μM), ouabain (1 mM), DIDS (1 mM), EIPA (100 μM), or Na+-free solution reduced the RVI by 60, 61, 39, 32, and 69%, respectively. K+, Cl channel and K+-Cl cotransporter (KCC) inhibition obtained with either 4-AP (1 mM), DIDS (1 mM), DIOA (100 μM), high K+ (20 mM) or Cl-free solution, suppressed RVD by 42, 47, 34, 52 and 58%, respectively. KCC activity also affects steady-state cell volume, since its inhibition or stimulation induced relative volume alterations under isotonic conditions. Taken together, K+ and Cl channels in parallel with KCC activity are important mediators of RVD, whereas RVI is temperature-dependent and is essentially mediated by the Na+-K+-2Cl cotransporter (Na+-K+-2Cl) and the Na+-K+ pump. Inhibition of K+ and Cl channels and KCC but not Na+-K+-2Cl affect steady-state cell volume under isotonic conditions. This is the first report that KCC activity is required for HCE cell volume regulation and maintenance of steady-state cell volume.  相似文献   

8.
Changes in oxygen consumption rate and Na+/K+-ATPase activity during early development were studied in the sea urchin Paracentrotus lividus Lam. The oxygen consumption rate increased from 0.12 μmol O2 mg protein−1 h−1 in unfertilized eggs to 0.38 μmol O2 mg protein−1 h−1 25 min after fertilization. Specific activity of the Na+/K+-ATPase was significantly stimulated after fertilization, ranging up to 1.07 μmol Pi h−1 mg protein−1 in the late blastula stage and slightly lower values in the early and late pluteus stages.  相似文献   

9.
We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 + and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, Macrobrachium amazonicum. (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP (K M = 0.09 ± 0.01 mmol L−1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ (K 0.5 = 0.91 ± 0.04 mmol L−1) in decapodid III than in other stages; NH4 + had no modulatory effect. The affinity for Na+ (K 0.5 = 13.2 ± 0.6 mmol L−1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 + obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval M. amazonicum. The NH4 +-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.  相似文献   

10.
Crayfish in which sodium absorption was maximally stimulated had elevated levels of both cAMP and Na+-K+-ATPase activity in gill tissue. The concentration of cAMP and activity of Na+-K+-ATPase in gill tissue were monitored following transfer of crayfish from water containing 125 mmol.l−1 Na to Na-free media. Both parameters were significantly elevated within 10 min of transfer to Na-free media and [cAMP] peaked between 1 and 2 h before falling transiently to the control level at 3 h. A second peak of [cAMP] and a further rise in Na+-K+-ATPase activity were evident 6 h after transfer and elevated levels were then maintained. The pattern observed was consistent with the existence of two separate mechanisms for the control of sodium absorption both of which stimulated the activity of Na+-K+-ATPase via elevation of the intracellular concentration of cAMP. The initial response was very rapid (<10 min) but of brief duration (1–2 h) and this mechanism appeared to be sensitive to changes in external ion levels. The second mechanism exhibited a much longer response time (3–6 h) and duration and was likely to be sensitive to changes in internal ion concentrations.  相似文献   

11.
Recently, a “Na+/NH4 + exchange complex” model has been proposed for ammonia excretion in freshwater fish. The model suggests that ammonia transport occurs via Rhesus (Rh) glycoproteins and is facilitated by gill boundary layer acidification attributable to the hydration of CO2 and H+ efflux by Na+/H+ exchanger (NHE-2) and H+-ATPase. The latter two mechanisms of boundary layer acidification would occur in conjunction with Na+ influx (through a Na+ channel energized by H+-ATPase and directly via NHE-2). Here, we show that natural ammonia loading via feeding increases branchial mRNA expression of Rh genes, NHE-2, and H+-ATPase, as well as H+-ATPase activity in juvenile trout, similar to previous findings with ammonium salt infusions and high environmental ammonia (HEA) exposure. The associated increase in ammonia excretion occurs in conjunction with a fourfold increase in Na+ influx after a meal. When exposed to HEA (1.5 mmol/l NH4HCO3 at pH 8.0), both unfed and fed trout showed differential increases in mRNA expression of Rhcg2, NHE-2, and H+-ATPase, but H+-ATPase activity remained at control levels. Unfed fish exposed to HEA displayed a characteristic reversal of ammonia excretion, initially uptaking ammonia, whereas fed fish (4 h after the meal) did not show this reversal, being able to immediately excrete ammonia against the gradient imposed by HEA. Exposure to HEA also led to a depression of Na+ influx, demonstrating that ammonia excretion can be uncoupled from Na+ influx. We suggest that the efflux of H+, rather than Na+ influx itself, is critical to the facilitation of ammonia excretion.  相似文献   

12.
Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na+, K+-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na+, K+-ATPase content. Kidneys were analyzed for Na+, K+-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na+, K+-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na+, K+-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na+, K+-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO3 and 2CO3 2−) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.  相似文献   

13.
To examine the effects of chronic ouabain treatment on blood pressure (BP), sodium excretion, and renal dopamine D1 receptor level, male Sprague-Dawley (SD) rats were treated with ouabain (27.8 μg kg−1 d−1) intraperitoneally for 5 weeks, and systolic blood pressure (SBP) were recorded weekly. After 5 weeks, sodium excretion and dopamine D1 receptor agonist fenoldopam-mediated natriuresis were measured, and the expression and phosphorylation levels of the renal cortical dopamine D1 receptor were confirmed by Western blot analysis. The effects of ouabain on fenoldopam-mediated inhibition of Na+-K+-ATPase activity were determined by colorimetric assays in human proximal tubular epithelial cells (HK-2 cells). After 5 weeks, the SBP in ouabain group was significantly higher than that in the control group (P < 0.01), but the sodium excretion and renal cortical D1 receptor expression levels were reduced, and D1 receptor phosphorylation levels were increased after ouabain treatment. Intravenous administration of fenoldopam caused an increased sodium excretion in control rats, but failed to induce natriuresis in ouabain-treated rats. In addition, fenoldopam induced a dose–respone (10−9 to 10−6 M) inhibition of Na+-K+-ATPase activity in HK-2 cells,but these effects were significantly diminished in HK-2 cells pretreated with nanomolar concentration of ouabain for 5 days (P < 0.01). We propose that the ouabain-induced reduction of the renal dopamine D1 receptor function serves as a mechanism responsible for sodium retention, and this contributes to the hypertension induced by chronic ouabain treatment.  相似文献   

14.
Mechanisms underlying the tissue-specific impact of cardiotonic steroids (CTS) on cell survival and death remain poorly understood. This study examines the role of Na+,K+-ATPase α subunits in death of Madin-Darby canine kidney (MDCK) cells evoked by 24-h exposure to ouabain. MDCK cells expressing a variant of the α1 isoform, CTS-sensitive α1S, were stably transfected with a cDNA encoding CTS-resistant α1R-Na+,K+-ATPase, whose expression was confirmed by RT–PCR. In mock-transfected and α1R-cells, maximal inhibition of 86Rb influx was observed at 10 and 1000 μM ouabain, respectively, thus confirming high abundance of α1R-Na+,K+-ATPase in these cells. Six-hour treatment of α1R-cells with 1000 μM ouabain led to the same elevation of the [Na+]i/[K+]i ratio that was detected in mock-transfected cells treated with 3 μM ouabain. However, in contrast to the massive death of mock-transfected cells exposed to 3 μM ouabain, α1R-cells survived after 24-h incubation with 1000 μM ouabain. Inversion of the [Na+]i/[K+]i ratio evoked by Na+,K+-ATPase inhibition in K+-free medium did not affect survival of α1R-cells but increased their sensitivity to ouabain. Our results show that the α1R subunit rescues MDCK cells from the cytotoxic action of CTS independently of inhibition of Na+,K+-ATPase-mediated Na+ and K+ fluxes and inversion of the [Na+]i/[K+]i ratio.  相似文献   

15.
Brook charr, Salvelinus fontinalis, often display alternate life history styles in coastal areas. In the Laval River, some brook charr remain freshwater residents, while others undergo seasonal migrations between freshwater and saltwater environments. In the present paper, we examined physiological (electrolyte concentrations, gill Na+, K+-ATPase activity, and thyroid hormone levels) as well as genetic differences (neutral genetic markers) between anadromous and river-resident fish from the Laval River. We also examined how artificial rearing conditions affected seasonal variations in the osmoregulatory physiology of a domestic strain derived from wild anadromous fish. Sympatric anadromous and resident forms of brook charr of the Laval River exhibited differences in gill Na+, K+-ATPase activity, plasma thyroxine (T4), and triidothyronine (T3) concentrations. In domestic anadromous charr, rearing conditions during development had no negative impact on osmoregulatory ability or on gill Na+, K+-ATPase activity. These results argued for an important hereditary component of gill Na+, K+-ATPase activity. However, the spring increase in T4 was present only in wild fish. Significant differences observed at microsatellite loci further suggested that at least some level of reproductive isolation may have occurred between anadromous and resident charr in the Laval River.  相似文献   

16.
The effects of trans fatty acids, elaidic acid (trans-9, C18:1) and linoelaidic acid (trans-9, trans-12 C18:2), at 20 or 40 μM in nerve growth factor differentiated PC12 cells with or without beta-amyloid peptide (Aβ) were examined. Elaidic acid treatment alone did not affect cell viability and oxidative injury associated markers (P > 0.05). However, co-treatments of elaidic acid and Aβ led to more reduction in mitochondrial membrane potential (MMP) and Na+-K+-ATPase activity, and more increase in DNA fragmentation and 8-hydroxydeoxyguanosine (8-OHdG) production than Aβ treatment alone (P < 0.05). Linoelaidic acid alone exhibited apoptotic and oxidative effects in cells via decreasing MMP and Na+-K+-ATPase activity, increasing reactive oxygen species (ROS) level, lowering glutathione content and glutathione peroxidase (GPX) activity (P < 0.05). The co-treatments of linoelaidic acid with Aβ further enhanced oxidative damage via enhancing the generation of ROS, nitrite oxide and 8-OHdG, elevating caspase-3, caspase-8 and nitric oxide synthase activities, as well as declining GPX, catalase and superoxide dismutase activities (P < 0.05). These results suggested that the interaction of linoelaidic acid and Aβ promoted oxidative stress and impaired mitochondrial functions in neuronal cells.  相似文献   

17.
The physiology of hyper-salinity tolerance in teleost fish: a review   总被引:3,自引:0,他引:3  
Hyper-saline habitats (waters with salinity >35 ppt) are among the harshest aquatic environments. Relatively few species of teleost fish can tolerate salinities much above 50 ppt, because of the challenges to osmoregulation, but those that do, usually estuarine, euryhaline species, show a strong ability to osmoregulate in salinities well over 100 ppt. Typically, plasma Na+ and Cl concentrations rise slowly or not at all up to about 65 ppt. At higher salinities ion levels do rise, but the increase is small relative to the magnitude of increase in concentrations of the surrounding water. A number of adjustments are responsible for such strong osmoregulation. Reduced branchial water permeability is indicated by the observation that with the exposure to hyper-salinities drinking rates rise more slowly than the branchial osmotic gradient. Lower water permeability limits osmotic water loss and greatly reduces the salt load incurred in replacing it. Still, increased gut Na+/K+-ATPase (NAK) activity is necessary to absorb the larger gut salt load and increased HCO3 secretion is required to precipitate Ca2+ and some Mg2+ in the imbibed water to facilitate water absorption. All Na+ and Cl taken up must be excreted and increased branchial salt excreting capacity is indicated by elevated mitochondrion-rich cell density and size, gill NAK activity and expression of chloride channels. Excretion of Na+ and Cl occurs against a larger gradient than in seawater and calculation of the equilibrium potential for Na+ across the gill epithelium indicates that the trans-epithelial potential required for excretion of Na+ climbs with salinity up to about 65 ppt before leveling off due to the increasing plasma Na+ levels. During acute transition to SW or mildly hyper-saline waters, some species have shown the ability to upregulate branchial NAK activity rapidly and this may play an important role in limiting disturbances at higher salinities. It does not appear that the opercular epithelium, which in SW acts in a way that is functionally similar to the gills, continues to do so in hyper-saline waters. Little is know about the hormones involved in acclimation to hyper-salinity, but the few studies available suggest a role for cortisol, but not growth hormone and insulin-like growth factor. Despite the increased transport capacity evident in both the gill and gut in hyper-saline waters there is no clear trend toward increased metabolic rate. These studies provide a general outline of the mechanisms of osmoregulation in these species, but significant questions still remain.  相似文献   

18.
The present study investigated both HCO 3 and Cl secretions in a human pancreatic duct cell line, CAPAN-1, using the short-circuit current (I sc ) technique. In Cl/HCO 3-containing solution, secretin (1 μm) or forskolin (10 μm) stimulated a biphasic rise in the I sc which initially reached a peak level at about 3 min and then decayed to a plateau level after 7 min. Removal of external Cl abolished the initial transient phase in the forskolin-induced I sc while the plateau remained. In HCO 3/CO2-free solution, on the contrary, only the initial transient increase in I sc was prominent. Summation of the current magnitudes observed in Cl-free and HCO 3-free solutions over a time course of 10 min gave rise to a curve which was similar, both in magnitude and kinetics, to the current observed in Cl/HCO 3-containing solution. Removal of external Na+ greatly reduced the initial transient rise in the forskolin-induced I sc response, and the plateau level observed under this condition was similar to that obtained in Cl-free solution, suggesting that Cl-dependent I sc was also Na+-dependent. Bumetanide (50 μm), an inhibitor of the Na+-K+-2Cl cotransporter, and Ba2+ (1 mm), a K+ channel blocker, could reduce the forskolin-induced I sc obtained in Cl/HCO 3-containing or HCO 3-free solution. However, they were found to be ineffective when external Cl was removed, indicating the involvement of these mechanisms in Cl secretion. On the contrary, the HCO 3-dependent (in the absence of external Cl) forskolin-induced I sc could be significantly reduced by carbonic anhydrase inhibitor, acetazolamide (45 μm). Basolateral application of amiloride (100 μm) inhibited the I sc ; however, a specific Na+-H+ exchanger blocker, 5-N-methyl-N-isobutylamiloride (MIA, 5–10 μm) was found to be ineffective, excluding the involvement of the Na+-H+ exchanger. However, an inhibitor of H+-ATPase, N-ethylmaleimide did suppress the I sc (IC50= 22 μm). Immunohistochemical studies also confirmed the presence of a vacuolar type of H+-ATPase in these cells. H2DIDS (100 μm), an inhibitor of Na+-HCO 3 cotransporter, was without effect. Apical addition of Cl channel blocker, diphenylamine-2,2′-dicarboxylic acid (DPC, 1 mm), but not disulfonic acids, DIDS (100 μm) or SITS (100 μm), exerted an inhibitory effect on both Cl and HCO 3-dependent forskolin-induced I sc responses. Histochemical studies showed discrete stainings of carbonic anhydrase in the monolayer of CAPAN-1 cells, suggesting that HCO 3 secretion may be specialized to a certain population of cells. The present results suggest that both HCO 3 and Cl secretion by the human pancreatic duct cells may occur concurrently and independently. Received: 17 October 1997/Revised: 3 April 1998  相似文献   

19.
Evidence of smolting was studied in Danish hatchery-reared brown trout Salmo trutta L. Twenty-four hour seawater (SW) challenge tests (28‰, 10°C) at regular intervals showed that maximal hypo-osmoregulatory ability developed within a 3–4-week period in March and April. The improved ability to regulate plasma osmolality, muscle water content and plasma total [Mg] developed asynchronously, indicating that developmental changes in the gill, the gastrointestinal system and the kidney may not necessarily concur during smolting. Gill Na+, K+-ATPase activity peaked in April at the time of optimal hypo-osmoregulatory ability. Na+, K+-ATPase a -subunit mRNA level in gills was unchanged from January until April, but decreased in May in parallel with a decrease in the activity of the enzyme. In the middle region of the intestine, Na+, K+-ATPase activity increased in February and remained high until April. In the posterior region of the intestine, the activity was stable from January until April after which it decreased. In vitro fluid transport capacitity, Jv, in the middle intestine fluctuated throughout the spring. In the posterior intestine, Jv was low until late March, when it increased fivefold until early May. Drinking rate in fish transferred to SW for 24 h surged during spring. Na+, K+-ATPase activity in the pyloric caeca was elevated from March until May, and increased in response to SW transfer in June, suggesting a hypo-osmoregulatory function of the pyloric caeca. Plasma GH levels surged in FW trout during spring, concurring with the increase in gill Na+, K+-ATPase activity and SW tolerance, but peaked in May when gill Na+, K+-ATPase activity and SW tolerance were regressing. GH levels were generally low in SW-challenged fish, and there was no consistent effect of 24-h SW exposure on GH levels. In wild anadromous trout, gill Na+, K+-ATPase activity varied seasonally as in hatchery-reared fish, but peaked at higher levels suggesting a more intense smolting in fish living in their natural environment.  相似文献   

20.
Arginine vasopressin stimulates Na+-K+-ATPase activity located in the rat thick ascending limb of s'Henle loop. Mammalian hypothalamus appears to produce a factor capable of inhibiting Na+-K+-ATPase activity in a variety of tissues. The effect of a purified rat hypothalamic extract with and without AVP on rat renal Na+-K+-ATPase activity was evaluated by a cytochemical technique. The hypothalamic extract alone failed to affect basal Na+-K+-ATPase activity throughout renal segments after 10 min exposure. Na+-K+-ATPase activity stimulated by AVP (1–10 fmol l?1) for 10 min was inhibited by rat hypothalamic extract over the concentration range 10?7–10?3 U ml?1 in a dose-dependent manner. Complete inhibition of AVP-stimulated Na+-K+-ATPase activity occurred at a hypothalamic extract concentration of 10?3 U ml?1. Only Na+-K+-ATPase activity located in the renal medullary thick ascending limb was influenced by the rat hypothalamic extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号