首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When Charles Darwin published The Origin of Species 150 years ago he consciously avoided discussing the origin of life. However, analysis of some other texts written by Darwin, and of the correspondence he exchanged with friends and colleagues demonstrates that he took for granted the possibility of a natural emergence of the first life forms. As shown by notes from the pages he excised from his private notebooks, as early as 1837 Darwin was convinced that “the intimate relation of Life with laws of chemical combination, & the universality of latter render spontaneous generation not improbable”. Like many of his contemporaries, Darwin rejected the idea that putrefaction of preexisting organic compounds could lead to the appearance of organisms. Although he favored the possibility that life could appear by natural processes from simple inorganic compounds, his reluctance to discuss the issue resulted from his recognition that at the time it was possible to undertake the experimental study of the emergence of life.  相似文献   

2.
As a Cambridge University undergraduate Charles Darwin was fascinated and convinced by the argument for intelligent design, as set forth in William Paley’s 1802 classic, Natural Theology. Subsequently, during his five-year voyage on HMS Beagle (1831–1836), Darwin interpreted his biological findings through a creationist lens, including the thought-provoking evidence he encountered during his historic visit to the Galápagos Islands in September and October 1835. After his return to England in 1836 and his subsequent conversion to the idea of organic evolution in March 1837, Darwin searched for a theory that would explain both the fact of evolution and the widespread appearance of intelligent design. His insight into the process of natural selection, which occurred in September 1838, provided this alternative explanation. Darwin’s Origin of Species (1859) exemplifies his skillful deployment of the hypothetico-deductive method in testing and refuting the arguments for intelligent design that he had once so ardently admired.  相似文献   

3.
This paper investigates the relationship between the eminent 19th-century naturalists Charles Darwin and Carl Vogt. On two separate occasions, Vogt asked Darwin for permission to translate some of the latter’s books into German, and in both cases Darwin refused. It has generally been assumed that Darwin turned down Vogt as a translator because of the latter’s reputation as a radical libertine who was extremely outspoken in his defence of scientific materialism and atheism. However, this explanation does not fit the facts, since, on closer investigation, Darwin not only gave serious consideration to engaging Vogt as the German translator of two of his books, albeit ultimately rejecting him, but he also collaborated with Vogt on the French editions of his works. In this paper we argue that this was not because Darwin was unaware of Vogt’s personality and blunt writing style; rather, Darwin seems to have decided that the benefits he would gain from their association would clearly outweigh the risk of offending some of his readers: in working with Vogt, who was not only a knowledgeable scientist but also an avowed adherent of Darwinism, Darwin could be assured of the scientific quality of the translation and of an edition that would not distort his central concepts – both of which were by no means matters of course in 19th-century translations of scientific works.  相似文献   

4.
During 2009, while we were celebrating Charles Darwin and his The origin of species, sadly, little was said about the critical contribution of Alfred Russel Wallace (1823–1913) to the development of the theory of evolution. Like Darwin, he was a truly remarkable nineteenth century intellect and polymath and, according to a recent book by Roy Davies (The Darwin conspiracy: origins of a scientific crime), he has a stronger claim to the Theory of Evolution by Natural Selection than has Darwin. Here we present a critical comparison between the contributions of the two scientists. Sometimes referred to as ‘The other beetle-hunter’ and largely neglected for many decades, Wallace had a far greater experience of collecting and investigating animals and plants from their native habitats than had Darwin. He was furthermore much more than a pioneer biogeographer and evolutionary theorist, and also made contributions to anthropology, ethnography, geology, land reform and social issues. However, being a more modest, self-deprecating man than Darwin, and lacking the latter’s establishment connections, Wallace’s contribution to the theory of evolution was not given the recognition it deserved and he was undoubtedly shabbily treated at the time. It is time that Wallace’s relationship with Darwin is reconsidered in preparation for 2013, the centenary of Wallace’s death, and he should be recognized as at least an equal in the Wallace-Darwin theory of evolution.  相似文献   

5.
It has long been argued that Charles Darwin was the founder of the school of "evolutionary taxonomy" of the Modern Synthesis and, accordingly, that he recognized genealogy and similarity as dual, synergistic criteria for classification. This view is based on three questionable interpretations: first, of isolated passages in the 13th chapter of the Origin of Species; second, of one phrase in a letter that Darwin wrote about the work of an author he had partly misunderstood; and third, of his taxonomic practice in the barnacle monographs, which only implicitly embody his philosophy of classification, if at all. These works, seen in fuller context and with the perspective of extensive correspondence, are consistent with the view that Darwin advocated only genealogy as the basis of classification, and that similarity was merely a tool for discovering evolutionary relationships. Darwin was neither a Mayrian taxonomist nor a cladist, and he did not approach systematic issues in the same terms that we do in the late 20th century.  相似文献   

6.
Joseph Hooker first learned that Charles Darwin believed in the transmutation of species in 1844. For the next 14 years, Hooker remained a “nonconsenter” to Darwin’s views, resolving to keep the question of species origin “subservient to Botany instead of Botany to it, as must be the true relation”. Hooker placed particular emphasis on the need for any theory of species origin to support the broad taxonomic delimitation of species, a highly contentious issue. His always provisional support for special creation waned during the 1850s as he lost faith in its expediency for coordinating the study of plant geography, systematics and physiology. In 1858, Hooker embraced Darwin’s “considerable revolution in natural history,” but only after Darwin had carefully molded his transmutationism to meet Hooker’s exacting specifications.  相似文献   

7.
The prevailing view among historians of science holds that Charles Darwin became a convinced transmutationist only in the early spring of 1837, after his Beagle collections had been examined by expert British naturalists. With respect to the fossil vertebrate evidence, some historians believe that Darwin was incapable of seeing or understanding the transmutationist implications of his specimens without the help of Richard Owen. There is ample evidence, however, that he clearly recognized the similarities between several of the fossil vertebrates he collected and some of the extant fauna of South America before he returned to Britain. These comparisons, recorded in his correspondence, his diary and his notebooks during the voyage, were instances of a phenomenon that he later called the “law of the succession of types.” Moreover, on the Beagle, he was following a geological research agenda outlined in the second volume of Charles Lyell’s Principles of Geology, which implies that paleontological data alone could provide an insight into the laws which govern the appearance of new species. Since Darwin claims in On the Origin of Species that fossil vertebrate succession was one of the key lines of evidence that led him to question the fixity of species, it seems certain that he was seriously contemplating transmutation during the Beagle voyage. If so, historians of science need to reconsider both the role of Britain’s expert naturalists and the importance of the fossil vertebrate evidence in the development of Darwin’s ideas on transmutation.  相似文献   

8.
9.
This essay traces the interlinked origins of two concepts found in Charles Darwin’s writings: “unconscious selection,” and sexual selection as applied to humanity’s anatomical race distinctions. Unconscious selection constituted a significant elaboration of Darwin’s artificial selection analogy. As originally conceived in his theoretical notebooks, that analogy had focused exclusively on what Darwin later would call “methodical selection,” the calculated production of desired changes in domestic breeds. By contrast, unconscious selection produced its results unintentionally and at a much slower pace. Inspiration for this concept likely came from Darwin’s early reading of works on both animal breeding and physical ethnology. Texts in these fields described the slow and unplanned divergence of anatomical types, whether animal or human, under the guidance of contrasting ideals of physical perfection. These readings, it is argued, also led Darwin to his theory of sexual selection as applied to race, a theme he discussed mainly in his book The Descent of Man (1871). There Darwin described how the racial version of sexual selection operated on the same principle as unconscious selection. He thereby effectively reunited these kindred concepts.  相似文献   

10.
An important historical relation that has hardly been addressed is the influence of Prosper Lucas’s Treatise on Natural Inheritance on the development of Charles Darwin’s concepts related to inheritance. In this article we trace this historical connection. Darwin read Lucas’s Treatise in 1856. His reading coincided with many changes concerning his prior ideas on the transmission and expression of characters. We consider that this reading led him to propose a group of principles regarding prepotency, hereditary diseases, morbid tendencies and atavism; following Lucas, he called these principles: laws of inheritance.  相似文献   

11.
Charles Darwin's famous 1882 letter, in response to a gift by his friend, William Ogle of Ogle's recent translation of Aristotle's Parts of Animals, in which Darwin remarks that his “two gods,” Linnaeus and Cuvier, were “mere school-boys to old Aristotle,” has been thought to be only an extravagantly worded gesture of politeness. However, a close examination of this and other Darwin letters, and of references to Aristotle in Darwin's earlier work, shows that the famous letter was written several weeks after a first, polite letter of thanks, and was carefully formulated and literally meant. Indeed, it reflected an authentic, and substantial, increase in Darwin's already high respect for Aristotle, as a result of a careful reading both of Ogle's Introduction and of more or less the portion of Ogle's translation which Darwin says he has read. Aristotle's promotion to the pantheon, as an examination of the basis for Darwin's admiration of Linnaeus and Cuvier suggests, was most likely the result specifically of Darwin's late discovery that the man he already knew as “one of the greatest ... observers that ever lived” (1879) was also the ancient equivalent both of the great modern systematist and of the great modern advocate of comparative functional explanation. It may also have reflected some real insight on Darwin's part into the teleological aspect of Aristotle's thought, indeed more insight than Ogle himself had achieved, as a portion of their correspondence reveals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Seventy-five years ago, the geneticist Richard Goldschmidt hypothesized that single mutations affecting development could result in major phenotypic changes in a single generation to produce unique organisms within animal populations that he called “hopeful monsters”. Three decades ago, Sarah P. Gibbs proposed that photosynthetic unicellular micro-organisms like euglenoids and dinoflagellates are the products of a process now called “secondary endosymbiosis” (i.e., the evolution of a chloroplast surrounded by three or four membranes resulting from the incorporation of a eukaryotic alga by a eukaryotic heterotrophic host cell). In this article, we explore the evidence for Goldschmidt’s “hopeful monster” concept and expand the scope of this theory to include the macroevolutionary emergence of organisms like Euglena and Chlorarachnion from secondary endosymbiotic events. We argue that a Neo-Goldschmidtian perspective leads to the conclusion that cell chimeras such as euglenids and dinoflagellates, which are important groups of phytoplankton in freshwater and marine ecosystems, should be interpreted as “successful monsters”. In addition, we argue that Charles Darwin had euglenoids (infusoria) in mind when he speculated on the “primordial intermediate form”, although his Proto-Euglena-hypothesis for the origin of the last common ancestor of all forms of life is no longer acceptable.  相似文献   

13.
14.
Sir Joseph Dalton Hooker (1817–1911), friend and scientific confidant of Charles Darwin, lectured in 1866 on ‘Insular floras’ at the Annual Meeting of the British Association for the Advancement of Science. His interest and knowledge of islands had been aroused when he travelled to the Antarctic aboard the Erebus under Sir James Clark Ross from 1839–43. On his return, Darwin passed on to Hooker the botanical collections he had made on the Beagle voyage, including those from the Galapagos. Hooker's conclusions from these and from his own material and experiences were important to Darwin as he developed the ideas that culminated in the publication of the Origin of Species. The 1866 lecture provided a focus for subsequent and informative studies on evolution, and islands continue to provide invaluable natural laboratories for evolutionary biology and genetics. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 462–481.  相似文献   

15.
Conclusions I have attempted to clarify some of the pathways in the development of Darwin's thinking. The foregoing examples of influence by no means include all that can be found by comparing Darwin's writings with Humboldt's. However, the above examples seem adequate to show the nature and extent of this influence. It now seems clear that Humboldt not only, as had been previously known, inspired Darwin to make a voyage of exploration, but also provided him with his basic orientation concerning how and what to observe and how to write about it. An important part of what Darwin assimilated from Humboldt was an appreciation of population analysis as a tool for assessing the state of societies and of the benefits and hardships which these societies can expect to receive from the living world around them.Darwin exhibited in his Journal of Researches a casual interest in the economic and political conditions of the countries he visited, but these considerations were much less important to him than to Humboldt. Instead, Darwin, with the assistance of Lyell's Principles of Geology, shifted from Humboldt's largely economic framework to a biological one built around the species question. This shift led Darwin away from a consideration of how the population biology of animals was related to man's economy to focus instead upon how population biology fitted into the economy of nature.Humboldt's Personal Narrative served very well as a model for Darwin's Journal of Researches, thereby helping Darwin gain scientific eminence. The Journal of Researches, like virtually all of Humboldt's writings, was a contribution to scientific orthodoxy. But Darwin had, along the way, acquired an urge to do more than just add his building blocks to the orthodox scientific edifice. He decided to rearrange those blocks of knowledge into a different structure, and for that task neither Humboldt's Personal Narrative nor any other of his works could serve as a model. Humboldt had lacked the confidence which Darwin needed that biogeography and the origin of species could be understood. Humboldt had not explored very far the possible connections between biology and geology. Nor had he provided a general synthetic account of population biology. Had he done so, he might have been more explicit about the extent of his endorsement of Malthus. But even if he had, Humboldt's strong orientation toward cooperation would probably have inhibited his recognition of the importance of competition in nature.Lyell, who had also benefited from reading Humboldt, gave Darwin insights that were lacking in Humboldt's Personal Narrative. Lyell admirably demonstrated how stratigraphy, paleontology, biogeography, and population biology could be interrelated, and his reasons for doing so were essentially the same as Darwin's. Lyell's understanding of biogeography and ecology came from the writings of Augustin-Pyramus de Candolle as much as from Humboldt's, and from the former Lyell derived an appreciation for the importance of competition and also a confidence that the mysteries of biogeography could be explained.117 Furthermore, Lyell's discussion of all these subjects and also of evolution in his Principles of Geology is a good synthetic argument that was the ideal model for Darwin's greatest book.Darwin, having become convinced that species change through time, was able to synthesize in his mind the contributions which he had derived from the writings of Humboldt and Lyell as they applied to the species question. When Darwin wrote his Journal of Researches there were two large gaps in his thinking about evolution that bothered him—the mechanism of evolution and the causes of extinction. It was only after reading Malthus in 1838 that he realized, as Lyell had more or less pointed out, how important was competition in nature. He now had the general outlines for his theory, and in the 1845 abridged edition of his Journal, now retitled The Voyage of the Beagle, he inserted a fuller discussion of competition in nature which showed his awareness of its importance as an ecological factor.118 An abridged version of this paper was presented at the meeting of the History of Science Society in Washington, D.C., on 29 December 1969.  相似文献   

16.
Almost any modern reader’s first encounter with Darwin’s writing is likely to be the “Historical Sketch,” inserted by Darwin as a preface to an early edition of the Origin of Species, and having since then appeared as the preface to every edition after the second English edition. The Sketch was intended by him to serve as a short “history of opinion” on the species question before he presented his own theory in the Origin proper. But the provenance of the “Historical Sketch” is somewhat obscure. Some things are known about its production, such as when it first appeared and what changes were made to it between its first appearance in 1860 and its final form, for the fourth English edition, in 1866. But how it evolved in Darwin’s mind, why he wrote it at all, and what he thought he was accomplishing by prefacing it to the Origin remain questions that have not been carefully addressed in the scholarly literature on Darwin. I attempt to show that Darwin’s various statements about the “Historical Sketch,” made primarily to several of his correspondents between 1856 and 1860, are somewhat in conflict with one another, thus making problematic a satisfactory interpretation of how, when, and why the Sketch came to be. I also suggest some probable resolutions to the several difficulties. How Darwin came to settle on the title “Historical Sketch” for the Preface to the Origin is not certain, but a guess may be ventured. When he first submitted the text to Asa Gray in February 1860 he called it simply “Preface Contributed by the Author to this American Edition” (Burkhardt et al., eds., vol. 8, 1993, p. 572; the collected correspondence is hereafter cited as CCD). In fact he had thought of it as being properly called a Preface much earlier, perhaps as early as 1856, as will be seen in what follows. It came to be called “An Historical Sketch of the Recent Progress of Opinion on the Origin of Species” only in the third English edition, April 1861. This is the title it retained thereafter, with the exception of an addition to the title in the sixth English edition, “Previously to the Publication of the First Edition of this Work” (Peckham, 1959, pp. 20, 59). The word “sketch,” on the other hand was one of two words Darwin commonly used in private correspondence to refer to the book that would later become the Origin, the other word being “Abstract,” and both signifying that Darwin thought of the work as being a resume rather than a full-fledged study (e.g., letter to J.D. Hooker, May 9 1856, CCD vol. 6 p. 106; letter to Baden Powell January 18 1860, CCD vol. 8 p. 41; letter to Lyell 25 June 1858, CCD v. 7, 1991, pp. 117–8; letter to Lyell May 1856, CCD, v. 6 p. 100). The most likely source of the title “Historical Sketch” for Darwin’s Preface is Charles Lyell’s Principles of Geology in which, beginning with the third edition (1834), Lyell added titles to his chapters, calling chapters 2–4 “Historical Sketch of the Progress of Geology” (Secord, in Lyell [1997], p. xlvii; for other uses by Lyell of this expression, cf. Porter, 1976, p. 95; idem 1982, p. 38; and Lyell, 1830 [1990], p. 30). Further parallels between Lyell’s Introduction and Darwin’s “Historical Sketch” in terms of content and strategy are suggested below.  相似文献   

17.
At the Linnean Society on 1 July 1858, Charles Lyell and Joseph Hooker, using only an extract from Charles Darwin's unpublished essay of 1844, and a copy of a recent letter to Asa Gray in Boston, argued successfully that Darwin understood how species originate long before a letter from Alfred Russel Wallace outlining his own version of the theory of evolution arrived at Darwin's home. That letter from Ternate in the Malay Archipelago, however, was not the first letter Darwin received from Wallace. This article will contend that two of the three letters Wallace sent Darwin between 10 October 1856 and 9 March 1858 arrived much earlier than Darwin recorded, thereby allowing him time to assess Wallace's ideas and claim an independent understanding of how the operation of divergence and extinction in the natural world leads strongly marked varieties to be identified as new species. By the time of the Linnean meeting Darwin's new ideas had filtered into his letters and ‘big’ species book, despite the absence of any independent evidence from the natural world to justify his constant insistence to have been guided only by inductive reasoning. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 725–736.  相似文献   

18.
This paper examines Charles Darwin's idea that language-use and humanity's unique cognitive abilities reinforced each other's evolutionary emergence-an idea Darwin sketched in his early notebooks, set forth in his Descent of man (1871), and qualified in Descent's second (1874) edition. Darwin understood this coevolution process in essentially Lockean terms, based on John Locke's hints about the way language shapes thinking itself. Ironically, the linguist Friedrich Max Müller attacked Darwin's human descent theory by invoking a similar thesis, the German romantic notion of an identity between language and thought. Although Darwin avoided outright contradiction, when he came to defend himself against Müller's attacks, he undercut some of his own argumentation in favor of the coevolution idea. That is, he found it difficult to counter Müller's argument while also making a case for coevolution. Darwin's efforts in this area were further complicated by British and American writers who held a naturalistic view of speech origins yet still taught that language had been invented by fully evolved homo sapiens, thus denying coevolution.  相似文献   

19.
Conclusion It is not justifiable to accuse Darwin of conscious or unconscious plagiarism. This charge is contrary to the historical evidence and to the extensive information that we have about his character. When Darwin listed the writers on the origin of species by natural selection before himself, he did not mention Blyth, and this omission did not disturb the cordial relations between Darwin and Blyth. Blyth continued to supply Darwin with information which Darwin used in his later publications with due acknowledgment to Blyth. For example, in The Descent of Man, Darwin cited Blyth: Mr. Blyth, as he informs me, saw Indian crows feeding two or three of their companions which were blind.63 Blyth felt no resentment. If he did, he would have so informed Darwin. Blyth did not regard himself as in any sense a predecessor of Darwin and he certainly did not resent Darwin as a plagiarizer of himself. Moreover, Darwin went to a great deal of trouble to find his own predecessors and to give them proper credit.64 After Darwin had completed his work on natural selection, he wrote a letter to the Reverend Baden Powell in which he clearly showed recognition of the contribution of others to his own work:No educated person, not even the most ignorant, could suppose I mean to arrogate to myself the origination of the doctrine that species had not been independently created. The only novelty in my work is the attempt to explain how species became modified, and to a certain extent how the theory of descent explains certain large classes of facts; and in these respects I received no assistance from my predecessors.65 *** DIRECT SUPPORT *** A8402011 00002  相似文献   

20.
Islands played a key role in Charles Darwin's observations and experiments on plant dispersal. By means of these experiments, he expunged the old idea that a given species could originate at multiple times and in multiple places. More importantly, by seeing the capabilities for dispersal of plant seeds, fruits and branches, he was able to develop ideas of how plants reach islands and thus he is one of the founders of plant biogeography. For facts regarding floristic distribution of plants, Darwin relied on other workers, most notably Sir Joseph Dalton Hooker. Among his insights were the differences between oceanic and continental islands on a floristic basis, ideas on how age of island and distance from mainland areas influenced composition of island floras, the nature of endemism on islands and the role islands and archipelagos served as stepping stones in dispersal. Ingenious at proposing hypotheses, but always respectful of facts, Darwin sought explanations for plant adaptations on islands at a time when knowledge of island botany was little more than floristic in nature. These explanations are compared with selected recent works in island botany. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 20–25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号