首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
3.
4.
Smad3, a critical component of the TGF-beta signaling pathways, plays an important role in the regulation of bone formation. However, how Smad3 affects osteoblast at the different differentiation stage remains still unknown. In the present study, we examined the effects of Smad3 on osteoblast phenotype by employing mouse bone marrow ST-2 cells and mouse osteoblastic MC3T3-E1 cells at the different differentiation stage. Smad3 overexpression significantly inhibited bone morphogenetic protein-2 (BMP-2)-induced ALP activity in ST-2 cells, indicating that Smad3 suppresses the commitment of pluripotent mesenchymal cells into osteoblastic cells. Smad3 increased the levels of COLI and ALP mRNA at 7 day cultures in MC3T3-E1 cells, and its effects on COL1 were decreased as the culture periods progress, although its effects on ALP were sustained during 21 day cultures. Smad3 overexpression enhanced the level of Runx2 and OCN mRNA at 14 day and 21 day cultures. Smad3 increased the levels of MGP and NPP-1 mRNA, although the extent of increase in MGP and NPP-1 was reduced and enhanced during the progression of culture period, respectively. Smad3 did not affect the level of ANK mRNA. On the other hand, Smad3 enhanced the level of MEPE mRNA at 14 and 21 day cultures, although Smad3 decreased it at 7 day cultures. In conclusion, Smad3 inhibits the osteoblastic commitment of ST-2 cells, while promotes the early stage of differentiation and maturation of osteoblastic committed MC3T3-E1 cells. Also, Smad3 enhanced the expression of mineralization-related genes at the maturation phase of MC3T3-E1 cells.  相似文献   

5.
The mechanisms whereby the parathyroid hormone (PTH) exerts its anabolic action on bone are incompletely understood. We previously showed that inhibition of ERK1/2 enhanced Smad3-induced bone anabolic action in osteoblasts. These findings suggested the hypothesis that changes in gene expression associated with the altered Smad3-induced signaling brought about by an ERK1/2 inhibitor would identify novel bone anabolic factors in osteoblasts. We therefore performed a comparative DNA microarray analysis between empty vector-transfected mouse osteoblastic MC3T3-E1 cells and PD98059-treated stable Smad3-overexpressing MC3T3-E1 cells. Among the novel factors, Tmem119 was selected on the basis of its rapid induction by PTH independent of later increases in endogenous TGF-β. The levels of Tmem119 increased with time in cultures of MC3T3-E1 cells and mouse mesenchymal ST-2 cells committed to the osteoblast lineage by BMP-2. PTH stimulated Tmem119 levels within 1 h as determined by Western blot analysis and immunocytochemistry in MC3T3-E1 cells. MC3T3-E1 cells stably overexpressing Tmem119 exhibited elevated levels of Runx2, osteocalcin, alkaline phosphatase, and β-catenin, whereas Tmem119 augmented BMP-2-induced Runx2 levels in mesenchymal cells. Tmem119 interacted with Runx2, Smad1, and Smad5 in C2C12 cells. In conclusion, we identified a Smad3-related factor, Tmem119, that is induced by PTH and promotes differentiation in mouse osteoblastic cells. Tmem119 is an important molecule in the pathway downstream of PTH and Smad3 signaling in osteoblasts.  相似文献   

6.
7.
8.
9.
The effects of Ce on the proliferation, osteogenic differentiation and mineralization function of a murine preosteoblast cell line MC3T3-E1 in vitro were investigated at cell and molecular levels. The results showed that Ce promoted the proliferation, osteogenic differentiation and mineralization function of MC3T3-E1 cells at concentrations of 0.0001, 0.001, 0.01, 0.1 and 1???M, but turned to inhibit the proliferation, osteogenic differentiation and mineralization function at concentrations of 10, 100 and 1000???M. Ce displayed the up-regulation of Runx2, BMP2, ALP, BSP, Col I and OCN genes at concentrations of 0.0001 and 0.1???M; these genes were down-regulated in the MC3T3-E1 cells treated with 1000???M Ce. The expression of BMP2, Runx2 and OCN proteins was promoted by Ce at concentrations of 0.0001 and 0.1???M, but these proteins were down-regulated after 1000???M Ce treatment. The results suggest that Ce likely up-regulates or down-regulates the expression of Runx2, which subsequently up- or down-regulates OB marker genes Col I and BMP2 at early stages and ALP and OCN at later stages of differentiation, thus causing to promote or inhibit the proliferation, osteogenic differentiation and mineralization function of MC3T3-E1 cells.  相似文献   

10.
We elucidate the role of CCN3/NOV, a member of the CCN family proteins, in osteoblast differentiation using MC3T3-E1 osteoblastic cells. Transduction with CCN3 adenovirus (AdCCN3) alone induced no apparent changes in the expression of osteoblast-related markers, whereas cotransduction with BMP-2 adenovirus (AdBMP-2) and AdCCN3 significantly inhibited the AdBMP-2-induced mRNA expression of Runx2, osterix, ALP, and osteocalcin. Immunoprecipitation-western analysis revealed that CCN3 associated with BMP-2. Compared to transduction with AdBMP-2 alone, cotransduction with AdBMP-2 and AdCCN3 attenuated the expression of phosphorylated Smad1/5/8 and the mRNA for Id1, Id2, and Id3. Transduction with AdCCN3 stimulated the expression of cleaved Notch1, the mRNA expression of Hes1 and Hey1/Hesr1, and the promoter activities of Hes1 and Hey1. The inhibitory effects of CCN3 on the expression of BMP-2-induced osteoblast-related markers were nullified in Hey1-deficient osteoblastic cells. These results indicate that CCN3 exerts inhibitory effects on BMP-2-induced osteoblast differentiation by its involvement of the BMP and Notch signaling pathways.  相似文献   

11.
Tang SY  Xie H  Yuan LQ  Luo XH  Huang J  Cui RR  Zhou HD  Wu XP  Liao EY 《Peptides》2007,28(3):708-718
The aim of this study was to investigate the effects of apelin on proliferation and apoptosis of mouse osteoblastic MC3T3-E1 cells. APJ was expressed in MC3T3-E1 cells. Apelin did not affect Runx2 expression, alkaline phosphatase (ALP) activity, osteocalcin and type I collagen secretion, suggesting that it has no effect on osteoblastic differentiation of MC3T3-E1 cells. However, apelin stimulated MC3T3-E1 cell proliferation and inhibited cell apoptosis induced by serum deprivation. Our study also shows that apelin decreased cytochrome c release and caspase-3, capase-8 and caspase-9 activation in serum-deprived MC3T3-E1 cells. Apelin activated c-Jun N-terminal kinase (JNK) and Akt (phosphatidylinositol 3-kinase downstream effector), and the JNK inhibitor SP600125, the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 or the Akt inhibitor 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO) inhibited its effects on proliferation and serum deprivation-induced apoptosis. Furthermore, apelin protected against apoptosis induced by the glucocorticoid dexamethasone or TNF-alpha. Apelin stimulates proliferation and suppresses serum deprivation-induced apoptosis of MC3T3-E1 cells and these actions are mediated via JNK and PI3-K/Akt signaling pathways.  相似文献   

12.
BMPs play an important role in both intramembranous and endochondral ossification. BIG-3, BMP-2-induced gene 3 kb, encodes a WD-40 repeat protein that accelerates the program of osteoblastic differentiation in vitro. To examine the potential interactions between BIG-3 and the BMP-2 pathway during osteoblastic differentiation, MC3T3-E1 cells stably transfected with BIG-3 (MC3T3E1-BIG-3), or with the empty vector (MC3T3E1-EV), were treated with noggin. Noggin treatment of pooled MC3T3E1-EV clones inhibited the differentiation-dependent increase in AP activity observed in the untreated MC3T3E1-EV clones but did not affect the increase in AP activity in the MC3T3E1-BIG-3 clones. Noggin treatment decreased the expression of Runx2 and type I collagen mRNAs and impaired mineralized matrix formation in MC3T3E1-EV clones but not in MC3T3E1-BIG-3 clones. To determine whether the actions of BIG-3 on osteoblast differentiation converged upon the BMP pathway or involved an alternate signaling pathway, Smad1 phosphorylation was examined. Basal phosphorylation of Smad1 was not altered in the MC3T3E1-BIG-3 clones. However, these clones did not exhibit the noggin-dependent decrease in phosphoSmad1 observed in the MC3T3E1-EV clones, nor did it decrease nuclear localization of phosphoSmad1. These observations suggest that BIG-3 accelerates osteoblast differentiation in MC3T3-E1 cells by inducing phosphorylation and nuclear translocation of Smad1 independently of endogenously produced BMPs.  相似文献   

13.
Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. We previously reported that Pro-Hyp promotes the differentiation of osteoblasts by increasing Runx2, osterix and Col1α1 mRNA expression levels. Here, to elucidate the mechanism of Pro-Hyp promotion of osteoblast differentiation, we focus on the involvement of Foxo1 in osteoblast differentiation via Runx2 regulation and the role of Foxg1 in Foxo1 regulation. The addition of Pro-Hyp had no effect on MC3T3-E1 cell proliferation in Foxo1- or Foxg1-knockdown cells. In Foxo1-knockdown cells, the addition of Pro-Hyp increased ALP activity, but in Foxg1-knockdown cells, it had no effect on ALP activity. An enhancing effect of Pro-Hyp on the Runx2 and osterix expression levels was observed in Foxo1-knockdown cells. However, no enhancing effect of Pro-Hyp on osteoblastic gene expression was observed when Foxg1 was knocked down. These results demonstrate that Pro-Hyp promotes osteoblastic MC3T3-E1 cell differentiation and upregulation of osteogenic genes via Foxg1 expression.  相似文献   

14.
15.
The extracellular matrix (ECM) of bone consists mainly of collagen type I, which induces osteoblastic differentiation and prevents apoptosis. Fas induces apoptosis in cells improperly adhering to ECM. Recently, it was described that Fas expression is modulated by epigenetic DNA methylation. Mouse MC3T3-E1 pre-osteoblastic cells were cultured either on collagen coated or on uncoated culture dishes for control. mRNA was isolated and gene expression was analyzed by quantitative RT–PCR. Furthermore, we measured global and specific DNA methylation. Compared to controls, cells cultured on collagen-coated dishes increased the expression of Runx2 and OCN indicating differentiation of pre-osteoblastic cells. Additionally, collagen up-regulated cyclin-A2 and down-regulated Fas expression suggesting increased cell multiplication. Furthermore, the expression of Dnmt1 and Hells, key mediators of the DNA-methylation process, was increased. As a consequence, we demonstrate that global DNA methylation and specific methylation of the Fas promoter was higher in MC3T3-E1 cells cultured on collagen when compared to controls. Investigation of signal transduction pathways by mean of inhibitors suggests that focal adhesion kinase, MAP- and Jun-kinases and AP-1 are involved in this process. In summary, we demonstrate that ECM prevents activation of Fas by epigenetic DNA-methylation.  相似文献   

16.
The roles of Sonic hedgehog (Shh) and Bone morphogenetic protein-2 (Bmp-2) in osteoblast differentiation were investigated using in vitro cell systems. Recombinant amino-terminal portion of SHH (rSHH-N) dose dependently stimulated ALP activity in C3H10T1/2 and MC3T3-E1 cells. rSHH-N induced expression of Osteocalcin mRNA in C3H10T1/2 cells. A soluble form of the receptor for type IA BMP receptor antagonized rSHH-N-induced ALP activity in C3H10T1/2 and MC3T3-E1 cells, indicating that BMPs are involved in SHH-induced osteoblast differentiation. Simultaneous supplement with rSHH-N and BMP-2 synergistically induced ALP activity and expression of Osteocalcin mRNA in C3H10T1/2 cells. Pretreatment with rSHH-N for 6 h enhanced the response to BMP-2 by increasing ALP activity in C3H10T1/2 and MC3T3-E1 cells. Stimulatory effects of rSHH-N and additive effects with rSHH-N and BMP-2 on ALP activity were also observed in mouse primary osteoblastic cells. Transplantation of BMP-2 (1 microg) into muscle of mice induced formation of ectopic bone, whereas transplantation of r-SHH-N (1-5 microg) failed to generate it. These results indicate that Shh plays important roles in osteoblast differentiation by cooperating with BMP.  相似文献   

17.
18.
19.
Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells   总被引:11,自引:0,他引:11  
Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyzes conversion of HMG-CoA to mevalonate, a rate-limiting step in cholesterol synthesis. The present study was undertaken to understand the events of osteoblast differentiation induced by statins. Simvastatin at 10(-7) M markedly increased mRNA expression for bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), alkaline phosphatase, type I collagen, bone sialoprotein, and osteocalcin (OCN) in nontransformed osteoblastic cells (MC3T3-E1), while suppressing gene expression for collagenase-1, and collagenase-3. Extracellular accumulation of proteins such as VEGF, OCN, collagenase-digestive proteins, and noncollagenous proteins was increased in the cells treated with 10(-7) M simvastatin, or 10(-8) M cerivastatin. In the culture of MC3T3-E1 cells, statins stimulated mineralization; pretreating MC3T3-E1 cells with mevalonate, or geranylgeranyl pyrophosphate (a mevalonate metabolite) abolished statin-induced mineralization. Statins stimulate osteoblast differentiation in vitro, and may hold promise drugs for the treatment of osteoporosis in the future.  相似文献   

20.
Extracellular matrix proteins (ECMs) serve as both a structural support for cells and a dynamic biochemical network that directs cellular activities. ECM proteins such as those of the SIBLING family (small integrin-binding ligand glycoprotein) could possess inherent growth factor activity. In this study, we demonstrate that exon 5 of dentin matrix protein 3 (phosphophoryn (PP)), a non-collagenous dentin ECM protein and SIBLING protein family member, up-regulates osteoblast marker genes in primary human adult mesenchymal stem cells (hMSCs), a mouse osteoblastic cell line (MC3T3-E1), and a mouse fibroblastic cell line (NIH3T3). Quantitative real-time PCR technology was used to quantify gene expression levels of bone markers such as Runx2, Osx (Osterix), bone/liver/kidney Alp (alkaline phosphatase), Ocn (osteocalcin), and Bsp (bone sialoprotein) in response to recombinant PP and stably transfected PP. PP up-regulated Runx2, Osx, and Ocn gene expression. PP increased OCN protein production in hMSCs and MC3T3-E1. ALP activity and calcium deposition was increased by PP in hMSC. Furthermore, an alpha(v)beta(3) integrin-blocking antibody significantly inhibited recombinant PP-induced expression of Runx2 in hMSCs, suggesting that signaling by PP is mediated through the integrin pathway. PP was also shown to activate p38, ERK1/2, and JNK, three components of the MAPK pathway. These data demonstrate a novel signaling function for PP in cell differentiation beyond the hypothesized role of PP in biomineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号