首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factor Xa is the enzymatically active constituent of the prothrombinase complex, which catalyzes the conversion of prothrombin to thrombin. We have isolated fragments, from tryptic digests of factor X, that consists of the gamma-carboxyglutamic acid (Gla) region linked to one or two epidermal growth factor (EGF)-like domains. Calcium ion binding measurements indicated that these fragments have a native conformation. The factor X-GlaEGF fragments inhibit factor Xa-induced blood clotting in a manner suggesting that they compete with factor Xa for phospholipid binding sites. The same conclusion was reached when thrombin generation was studied in a system of purified components (factor Xa, factor Va, prothrombin, phospholipid, and Ca2+). There was no evidence for a strong interaction between the EGF-like domains of factor Xa and factor Va in either system. However, experiments in the purified system without phospholipid indicated a direct, albeit weak, interaction between the Gla region of factor Xa and factor Va and between the COOH-terminal EGF-like domain of factor Xa and factor Va. Using domain-specific Fab fragments, we have confirmed that the conformation of the serine protease region alters dramatically upon activation of factor X. Furthermore, we have demonstrated that the conformation of the Gla region is affected by the activation, whereas the EGF-like domains appear to be unaltered. The association constant for factor X binding to endothelial cells was two orders of magnitude lower than that for binding of factor IX to these cells. Binding of the Gla and GlaEGF fragments suggested Gla-mediated binding to phospholipid rather than binding to a specific receptor.  相似文献   

2.
Cultured bovine aortic endothelial cells incubated with Factor Xa activate prothrombin. Factor V, synthesized by the endothelial cells, or plasma Factor V and calcium are required for the reaction. In the present study, it has been demonstrated that 125I-Factor Xa binds specifically to endothelial cells. In addition, the activation of prothrombin by Factor Xa and aortic endothelial cells has been further characterized. The binding of 125I-Factor Xa to endothelial cells was saturable and reversible. The equilibrium dissociation constant (Kd) for 125I-Factor Xa binding was 3.6 X 10(-9) M, with 39000 molecules bound per cell. 125I-Factor Xa, inactivated by diisopropylfluorophosphate did not bind specifically to endothelial cells, indicating that the active site of Factor Xa was required for binding. Factor Xa, but not activated protein C, competed with 125I-Factor Xa for binding. Autoradiograms of sodium dodecyl sulfate-polyacrylamide gels of cell lysates indicated that the radiolabeled material that bound to the cells had electrophoretic mobility identical to Factors Xa alpha and Xa beta. Although Factor X partially inhibited the binding of 125I-Factor Xa, Factor Xa did not inhibit the binding of 125I-Factor X, indicating that the zymogen and enzyme bound to different receptors. The relationship of the 125I-Factor Xa binding which was measured in these studies to aortic endothelial cell prothrombin activation is unclear since an anti-Factor V IgG blocked prothrombin activation but not Factor Xa binding. Additionally, 125I-Factor Xa binds to nonvascular cells; these cells do not activate prothrombin in the presence of Factor Xa. Moreover, the calcium requirements for each reaction and the saturation curves of 125I-Factor Xa binding and prothrombin activation differ. Although these data do not exclude a relationship between Factor Xa binding and prothrombin activation, the binding of 125I-Factor Xa to aortic endothelium measured in these studies may be related to a separate cellular function. To further characterize prothrombin activation by Factor Xa and endothelial cells, the rates of thrombin generation by intact bovine aorta or endothelial cells derived from this tissue were compared and were found to be equivalent. These data indicate that vascular endothelium may serve as a physiologic surface for hemostasis.  相似文献   

3.
The kinetics of the activation of human prothrombin catalyzed by human prothrombinase was studied using the fluorescent alpha-thrombin inhibitor dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide (DAPA). Prothrombinase proteolytically activates prothrombin to alpha-thrombin by cleavages at Arg273-Thr274 (bond A) and Arg322-Ile323 (bond B). The differential fluorescence properties of DAPA complexed with the intermediates and products of human prothrombin activation were exploited to study the kinetics of the individual bond cleavages in the zymogen. When the catalyst was composed of prothrombinase (human factor Xa, human factor Va, synthetic phospholipid vesicles, and calcium ion), initial velocity studies of alpha-thrombin formation indicated that the kinetic constants for the cleavage of bonds A or B were similar to the constants that were obtained for the overall reaction (bonds A + B). The progress of the reaction was also monitored by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The results indicated that the activation of human prothrombin catalyzed by prothrombinase proceeded exclusively via the formation of meizothrombin (bond B-cleaved) as an intermediate. Kinetic studies of the cofactor dependence of the rates of cleavage of the individual bonds indicated that, in the absence of the cofactor, cleavage at bond B would constitute the rate-limiting step in prothrombin activation. Progress curves for prothrombin activation catalyzed by prothrombinase and monitored using the fluorophore DAPA were typified by the appearance of a transient maximum, indicating the formation of meizothrombin as an intermediate. When factor Xa alone was the catalyst, progress curves were characterized by an initial burst phase, suggesting the rapid production of prethrombin 2 (bond A-cleaved) followed by its slow conversion to alpha-thrombin. Gel electrophoresis followed by autoradiography was used to confirm these results. Collectively, the results indicate that the activation of human prothrombin via the formation of meizothrombin as an intermediate is a consequence of the association of the cofactor, human factor Va, with the enzyme, human factor Xa, on the phospholipid surface.  相似文献   

4.
The prothrombinase complex, which catalyzes the conversion of prothrombin to thrombin, consists of activated Factor X, Factor Va, a membrane surface and Ca2+. To examine the structures that support Factor Va binding to Factor X, we used in vitro mutagenesis to construct a chimeric molecule that includes regions of Factor IX and Factor X. This chimera (IXGla,E1XE2,SP) was prepared from cDNA encoding the second epidermal growth factor (EGF) and serine protease domains of Factor X linked downstream from the cDNA encoding the signal peptide, propeptide, Gla domain, and first EGF domain of Factor IX. The cDNAs encoding the Factor IX/X chimera and wild-type Factor X were each expressed in Chinese hamster ovary cells and the secreted proteins purified by affinity chromatography using polyclonal anti-Factor X antibodies. The chimera migrated as a single major band corresponding to a molecular weight of 68,000. By Western blotting, the chimeric protein stained with both polyclonal anti-Factor X and anti-Factor IX antibodies. gamma-Carboxyglutamic acid analysis demonstrated near complete carboxylation of both the wild-type Factor X and the Factor IX/X chimera. Compared with Factor X, the rate of zymogen activation of the Factor IX/X chimera was about 50% that of Factor X when activated by Factor IXa, Factor VIIIa, phospholipid, and Ca2+. The enzyme form of the Factor IX/X chimera, activated Factor IX/X, generated using the coagulant protein of Russell's viper venom, expressed full amidolytic activity compared with Factor Xa. The activated Factor IX/X chimera had about 14% of the activity of Factor Xa when employed in a prothrombinase assay; this activity reached 100% with increasing concentrations of Factor Va. A binding assay was employed to test the ability of the active site-inactivated Factor IX/Xa chimera to inhibit the binding of Factor Xa to the Factor Va-phospholipid complex, thus inhibiting the activation of prothrombin to thrombin. In this assay the active site-inactivated form of the chimera competed with Factor Xa completely but with decreased affinity for the Factor Va-phospholipid complex. These data indicate that the second EGF domain and the serine protease domain of Factor Xa are sufficient to interact with Factor Va. The Factor IX/X chimera is a good substrate for the tenase complex; the defective enzymatic activity of the activated Factor IX/X chimera can be accounted for by its decreased affinity for Factor Va relative to Factor Xa.  相似文献   

5.
The prothrombinase complex consists of the protease factor Xa, Ca2+, and factor Va assembled on an anionic membrane. Factor Va functions both as a receptor for factor Xa and a positive effector of factor Xa catalytic efficiency and thus is key to efficient conversion of prothrombin to thrombin. The activation of the procofactor, factor V, to factor Va is an essential reaction that occurs early in the process of tissue factor-initiated blood coagulation; however, the catalytic sequence leading to formation of factor Va is a subject of disagreement. We have used biophysical and biochemical approaches to establish the second order rate constants and reaction pathways for the activation of phospholipid-bound human factor V by native and recombinant thrombin and meizothrombin, by mixtures of prothrombin activation products, and by factor Xa. We have also reassessed the activation of phospholipid-bound human prothrombin by factor Xa. Numerical simulations were performed incorporating the various pathways of factor V activation including the presence or absence of the pathway of factor V-independent prothrombin activation by factor Xa. Reaction pathways for factor V activation are similar for all thrombin forms. Empirical rate constants and the simulations are consistent with the following mechanism for factor Va formation. alpha-Thrombin, derived from factor Xa cleavage of phospholipid-bound prothrombin via the prethrombin 2 pathway, catalyzes the initial activation of factor V; generation of factor Va in a milieu already containing factor Xa enables prothrombinase formation with consequent meizothrombin formation; and meizothrombin functions as an amplifier of the process of factor V activation and thus has an important procoagulant role. Direct activation of factor V by factor Xa at physiologically relevant concentrations does not appear to be a significant contributor to factor Va formation.  相似文献   

6.
G-protein-coupled receptors (GPCRs) are important membrane proteins that mediate cellular signaling and represent primary targets for about one-third of currently marketed drugs. Recent x-ray crystallographic studies identified distinct conformations of GPCRs in the active and inactive states. An allosteric sodium ion was found bound to a highly conserved D2.50 residue in inactive GPCRs, whereas the D2.50 allosteric pocket became collapsed in active GPCR structures. However, the dynamic mechanisms underlying these observations remain elusive. In this study, we aimed to understand the mechanistic effects of sodium ion binding on dynamic activation of the M3 muscarinic GPCR through long-timescale accelerated molecular dynamics (aMD) simulations. Results showed that with the D2.50 residue deprotonated, the M3 receptor is bound by an allosteric sodium ion and confined mostly in the inactive state with remarkably reduced flexibility. In contrast, the D2.50-protonated receptor does not exhibit sodium ion binding to the D2.50 allosteric site and samples a significantly larger conformational space. The receptor activation is captured and characterized by large-scale structural rearrangements of the transmembrane helices via dynamic hydrogen bond and salt bridge interactions. The residue motions are highly correlated during receptor activation. Further network analysis revealed that the allosteric signaling between residue D2.50 and key residues in the intracellular, extracellular, and orthosteric pockets is significantly weakened upon sodium ion binding.  相似文献   

7.
The crystal structure of the kringle 2 domain of tissue plasminogen activator was determined and refined at a resolution of 2.43 A. The overall fold of the molecule is similar to that of prothrombin kringle 1 and plasminogen kringle 4; however, there are differences in the lysine binding pocket, and two looping regions, which include insertions in kringle 2, take on very different conformations. Based on a comparison of the overall structural homology between kringle 2 and kringle 4, a new sequence alignment for kringle domains is proposed that results in a division of kringle domains into two groups, consistent with their proposed evolutionary relation. The crystal structure shows a strong interaction between a lysine residue of one molecule and the lysine/fibrin binding pocket of a noncrystallographically related neighbor. This interaction represents a good model of a bound protein ligand and is the first such ligand that has been observed in a kringle binding pocket. The structure shows an intricate network of interactions both among the binding pocket residues and between binding pocket residues and the lysine ligand. A lysine side chain is identified as the positively charged group positioned to interact with the carboxylate of lysine and lysine analogue ligands. In addition, a chloride ion is located in the kringle-kringle interface and contributes to the observed interaction between kringle molecules.  相似文献   

8.
Heparin and heparin fragments in the molecular mass range 1,700-20,000 Da were examined for their ability to accelerate the antithrombin III (AT III)-dependent inhibition of human factor Xa and the prothrombin converting complex (prothrombinase) during human prothrombin activation. The prothrombinase reaction was modeled by a 3-parameter 2-exponential equation to determine the initial rate of prothrombin activation and the pseudo-first order rate constants of inhibition of prothrombinase and in situ generated thrombin activity. The catalytic specific activities of the heparins increased with increasing molecular size for both the inhibition of prothrombinase and factor Xa. A 10-fold increase over the entire Mr range was found. In contrast to results obtained by others (Ellis, V., Scully, M. F., and Kakkar, V. V. (1986) Biochem. J. 233, 161-165; Barrowcliffe, T. W., Havercroft, S. J., Kemball-Cook, G., and Lindahl, U. (1987) Biochem. J. 243, 31-37), all the heparins showed a 5-fold higher rate of inhibition of factor Xa when compared with the inhibition of prothrombinase, indicating that the factor Va-mediated protection of factor Xa from inhibition by AT III/heparin is independent of the molecular size of the heparin. Our original approach has also revealed a hitherto unrecognized phenomenon, namely, in addition to the accelerating effect of the heparins on the rate of formation of the inactive AT III-factor Xa complex, heparins with Mr greater than 4,500 reduce the initial rate of thrombin generation in the presence of AT III in a concentration-dependent way. We hypothesize that the formation of the dissociable ternary AT III-heparin-factor Xa complex results in a (partial) loss of factor Xa activity towards its natural substrate prothrombin.  相似文献   

9.
Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

10.
Regulatory exosite I of thrombin is present on prothrombin in a precursor state (proexosite I) that specifically binds the Tyr(63)-sulfated peptide, hirudin(54-65) (Hir(54-65)(SO(3)(-))) and the nonsulfated analog. The role of proexosite I in the mechanism of factor Va acceleration of prothrombin activation was investigated in kinetic studies of the effects of peptide binding. The initial rate of human prothrombin activation by factor Xa was inhibited by the peptides in the presence of factor Va but not in the absence of the cofactor. Factor Xa and factor Va did not bind the peptide with significant affinity compared with prothrombin. Maximum inhibition reduced the factor Va-accelerated rate to a level indistinguishable from the rate in the absence of the cofactor. The effect of Hir(54-65)(SO(3)(-)) on the kinetics of prothrombin activation obeyed a model in which binding of the peptide to proexosite I prevented productive prothrombin interactions with the factor Xa-factor Va complex. Comparison of human and bovine prothrombin as substrates demonstrated a similar correlation between peptide binding and inhibition of factor Va acceleration. Inhibition of prothrombin activation by hirudin peptides was opposed by assembly on phospholipid vesicles of the membrane-bound factor Xa-factor-Va-prothrombin complex. Factor Va interactions of human and bovine prothrombin activation are concluded to share a common mechanism in which proexosite I participates in productive interactions of prothrombin as the substrate of the factor Xa-factor Va complex, possibly by directly mediating productive prothrombin-factor Va binding.  相似文献   

11.
The conversion of the blood coagulation zymogen prothrombin to thrombin is associated with the production of several cleavage intermediates and products. In contrast to earlier studies of prothrombin cleavage in chemically defined systems, the current investigation examines the fragmentation of human prothrombin in normal plasma. Radiolabeled prothrombin was added to platelet-poor relipidated normal human plasma, and clotting was initiated with the addition of Ca(II) and kaolin. Analysis of the radiolabeled prothrombin cleavage products by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate and beta-mercaptoethanol identified a heretofore unobserved product of prothrombin activation with an apparent molecular weight of 45,000. This product was identified as fragment 1 X 2 X 3, the NH2-terminal 286 amino acids of prothrombin. The product was isolated from a prothrombin digest by immunoaffinity chromatography using anti-prothrombin:Ca(II) antibodies and by preparative gel electrophoresis. Its amino-terminal sequence is identical to that of prothrombin. Digestion of this product with either Factor Xa or thrombin yields, at a minimum, fragment 1 X 2 and fragment 1. Amino-terminal sequence analysis of the products obtained by digestion with Factor Xa of the unknown activation product indicated 3 amino acid residues at each cycle consistent with the presence of fragment 1, fragment 2, and fragment 3. To unambiguously identify the COOH-terminal amino acid sequence of the product, its factor Xa digestion products were separated by reverse-phase high performance liquid chromatography. Edman degradation of one peptide revealed the complete sequence of fragment 3. On this basis, we identify the Mr 45,000 polypeptide as fragment 1 X 2 X 3 and indicate that it is a prominent product of prothrombin conversion to thrombin when activation occurs in plasma.  相似文献   

12.
Abstract

Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of lig-ands such as EGF or transforming growth factor alpha (TGF-α) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10–16, 36–37, 40–47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-α which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

13.
The active site of factor Xa, labelled with dansylglutamylglycylarginine (DnsEGR) is sensitive to association with Ca2+, factor Va and phospholipids. When bound to factor Va, DnsEGR-factor-Xa does not change the composition of the binding site of factor Va, as shown by fluorescence energy-transfer experiments between the Trp residues of factor Va and pyrene-labelled phospholipids. Prothrombin was cleaved by alpha-chymotrypsin into two parts: N-terminal residues 1-41 (peptide 1-41) containing the gamma-carboxyglutamic acid residues (Gla), and des-(1-41)-prothrombin; their membrane association was investigated. Peptide 1-41 contains the aromatic residues Tyr and Trp in positions 24 and 41, respectively, and is suitable for fluorescence spectroscopy. The absence of fluorescence energy transfer between these residues suggests that they are more than 2.8 nm apart. Binding of Ca2+ and of phospholipids involves essentially the Tyr residue, while the C-terminal characteristics of the Trp residue remain unchanged. The conformational change which takes place on binding does not shorten the distance between Tyr and Trp beyond 2.8 nm. Our conclusion is that peptide 1-41 has an extended conformation. This result is compatible with the disordered character of the Gla region found in the crystalline structure of fragment 1 of prothrombin. Ca2+ induces a greater fluorescence energy transfer between prothrombin and membranes labelled with pyrene but has no influence on the binding of des-(1-41)-prothrombin. Moreover, the binding curves of des(1-41)-prothrombin are similar to those of prothrombin in the absence of Ca2+. It is concluded that the Ca2+-independent association of prothrombin with membranes involves essentially that part of the prothrombin molecule deleted in the Gla region.  相似文献   

14.
Human prothrombin has been purified from American Red Cross Factor IX concentrates. Studies of the activation of the human prothrombin with the use of sodium dodecyl sulfate electrophoretic analysis of activation products indicated that human prothrombin activation is similar to bovine prothrombin activation. Molecular weight analysis of human prothrombin and intermediated by sodium dodecyl sulfate co-electrophoresis with bovine prothrombin and its intermediates resulted in molecular weights of 70,000 for prothrombin, 51,000 for intermediate 1, 41,000 for intermediate 2, 23,000 for intermediate 3, and 13,000 for intermediate 4. Amino acid compositions of human prothrombin and intermediates are similar to those for bovine prothrombin and intermediates. NH2-terminal sequence studies of human prothrombin, intermediates, and alpha-thrombin A and B chains placed the intermediates in the parent human prothrombin molecule as described for the bovine system. Intermediate 3 is the NH2-terminal of prothrombin, and intermediate 1 is the COOH-terminal segment of the zymogen. Intermediate 4 is the NH2-terminal of intermediate 1. Intermediate 2', the immediate precursor of alpha-thrombin, is the COOH-terminal segment of intermediate 1. In general, a high degree of homology in the primary structure of prothrombin and intermediates was observed between the human and bovine system. The NH2-terminal sequences of human intermediate 2' and alpha-thrombin A chain are identical. However, human intermediate 2' isolated in a manner identical with that used for the isolation of bovine intermediate 2 is homologous with bovine intermediate 2, beginning with residue 14.  相似文献   

15.
LDL (low-density lipoprotein) receptor (LDLR) binds to its negative regulator proprotein convertase subtilisin/kexin type 9 (PCSK9) through the first EGF (epidermal growth factor-like) domain [EGF(A)]. The isolated EGF(A) domain is a poor antagonist due to its low affinity for PCSK9. To improve binding affinity, we used a phage display approach by randomizing seven PCSK9 contact residues of EGF(A), including the Ca(2+)-coordinating Asp310. The library was panned in Ca(2+)-free solution, and 26 unique clones that bind to PCSK9 were identified. Four selected variants demonstrated improved inhibitory activities in a PCSK9-LDLR competition binding ELISA. The Fc fusion protein of variant EGF66 bound to PCSK9 with a K(d) value of 71nM versus 935nM of wild type [EGF(A)-Fc] and showed significantly improved potency in inhibiting LDLR degradation in vitro and in vivo. The five mutations in EGF66 could be modeled in the EGF(A) structure without perturbation of the EGF domain fold, and their contribution to affinity improvement could be rationalized. The most intriguing change was the substitution of the Ca(2+)-coordinating Asp310 by a Lys residue, whose side-chain amine may have functionally replaced Ca(2+). EGF66-Fc and other EGF variants having the Asp310Lys change bound to PCSK9 in a Ca(2+)-independent fashion. The findings indicate that randomization of an important Ca(2+)-chelating residue in conjunction with "selection pressure" applied by Ca(2+)-free phage selection conditions can yield variants with an alternatively stabilized Ca(2+) loop and with increased binding affinities. This approach may provide a new paradigm for the use of diversity libraries to improve affinities of members of the Ca(2+)-binding EGF domain subfamily.  相似文献   

16.
The crystallographic structure of bovine prothrombin fragment 1 bound with calcium ions was used to construct the corresponding human prothrombin structure (hf1/Ca). The model structure was refined by molecular dynamics to estimate the average solution structure. Accommodation of long-range ionic forces was essential to reach a stable solution structure. The gamma-carboxyglutamic acid (Gla) domain and the kringle domain of hf1/Ca independently equilibrated. Likewise, the hydrogen bond network and the calcium ion coordinations were well preserved. A discussion of the phospholipid binding of the vitamin K-dependent coagulation proteins in the context of the structure and mutational data of the Gla domain is presented.  相似文献   

17.
The activation of human prothrombin by the bacterial protein staphylocoagulase proceeds via the formation of a very stable equimolar complex. Unmasking of the active center in the prothrombin moiety of the complex is not caused by limited proteolysis. The kinetics of activation of human prothrombin by staphylocoagulase has been studied. The second order rate constant at pH 7.5, 37 degrees C, is 3.3 X 10(6) M-1 S-1. This reaction rate is close to reported diffusion-controlled rates of protein-protein interaction. The dissociation constant of the complex was too low to be measurable. From the kinetic data it is assumed that the first order rate constant for dissociation is orders of magnitude less than 10(-5) S-1. However, dissociation of the complex did occur in the presence of sodium dodecyl sulfate. Equimolar amounts of staphylocoagulase protect human thrombin, but not human factor Xa and bovine thrombin, against inactivation by antithrombin III. From these findings we postulate that tertiary structural changes in the thrombin region of prothrombin caused by a highly specific interaction between staphylocoagulase and that region unmask the active site.  相似文献   

18.
Limited proteolysis of bovine blood coagulation Factor X by chymotrypsin produces a derivative in which the light chain is cleaved between Tyr 44 and Lys 45. Two peptide products, residues 1-44 of the Factor X light chain and a modified zymogen, Factor X(-GD) have been isolated and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, elution behavior on anion-exchange chromatography, amino acid composition, and by partial amino acid sequence determination. Factor X(-GD) no longer contains the 12 gamma-carboxyglutamic acid residues of the native zymogen and thus serves as a model for investigation of the properties conferred on Factor X by the presence of gamma-carboxyglutamic acid. Cleavage of Factor X at Tyr 44 by chymotrypsin is inhibited by Ca2+ and Mg2+ ions. Factor X(-GD) is activated by the coagulation factor activator of Vipera russellii venom, but at less than 1% of the rate of activation of native Factor X. The susceptibility of Tyr 44 to chymotryptic cleavage implies that this residue is on the surface of the light chain of Factor X. Factor Xa(-GD) is indistinguishable from native Factor Xa in its activity on Benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide, on prothrombin alone, and on prothrombin plus Factor Va. In the presence of phospholipid the rate of prothrombin activation catalyzed by Factor Xa(-GD) is the same as in the absence of phospholipid.  相似文献   

19.
The rates of prothrombin activation under initial conditions of invariant concentrations of prothrombin and Factor Xa were studied in the presence of various combinations of Ca2+, homogeneous bovine Factor V, Factor Va, phosphatidylcholine-phosphatidylserine vesicles, and activated bovine platelets. Reactions were monitored continuously through the enhanced fluorescence accompanying the interaction of newly formed thrombin with dansylarginine-N-(3-ethyl-1,5-pentanediyl) amide. The complete prothrombinase (Factor Xa, Ca2+, phospholipid, and Factor Va) behaved as a "typical" enzyme and catalyzed the activation of prothrombin with an apparent Vmax of 2100 mol of thrombin/min/mol of Factor Va or Factor Xa, whichever was the rate-limiting component. Regardless of whether the enzymatic complex was composed of Factor Xa, Ca2+, and plasma Factor Va plus phospholipid vesicles, or activated platelets in the place of the latter components, similar specific activity values were observed. The combination of Factor Va, Ca2+, and phospholipid enhanced the rate of the Factor Xa-catalyzed activation of prothrombin by a factor of 278,000. Factor Va itself when added to Factor Xa, Ca2+, and phospholipid, enhanced the rate of prothrombin activation by a factor of 13,000. Unactivated Factor V appears to possess 0.27% of the procoagulant activity of thrombin-activated Factor Va. From the kinetics of prothrombinase activity, an interaction between Factor Xa and both Factor V and Factor Va was observed, with apparent 1:1 stoichiometries and dissociation constants of 7.3 x 10(-10) M for Factor Va and 2.7 x 10(-9) M for Factor V. The present data, combined with data on the equilibrium binding of prothrombinase components to phospholipid, indicate that the model prothrombinase described in this paper consists of a phospholipid-bound, stoichiometric complex of Factor Va and Factor Xa, with bound Factor Va serving as the "binding site" for Factor Xa, in concert with its proposed role in platelets.  相似文献   

20.
A membrane-bound Ca2+-dependent complex of the cofactor Factor Va and the enzyme Factor Xa comprises the prothrombinase coagulation complex which catalyzes the proteolytic conversion of prothrombin to thrombin. Analyses of the kinetics of prothrombin activation permit calculation of the stoichiometry and binding parameters governing the functional interactions of Factor Va and Factor Xa with isolated thrombin-activated human platelets and isolated leukocyte subpopulations. Our kinetic approach indicates that Factor Xa binds to approximately 2700 +/- 1000 (n = 8) functional sites on the surface of thrombin-activated platelets with an apparent dissociation constant (Kd) equal to 1.18 +/- 0.53 X 10(-10) M and kcat equal to 19 +/- 7 mol of thrombin/s/mol of Factor Xa bound. The store of Factor V in normal platelets prevents an analogous determination of the functional Factor Va platelet binding sites. Factor Va and Factor Xa titrations performed using platelets from a Factor V antigen-deficient individual indicate that Factor Va and Factor Xa form a 1:1 stoichiometric complex on the surface of thrombin-activated platelets. Both binding isotherms are governed by the same apparent Kd (approximately equal to 10(-10) M) and expressed the same kcat/site (14-17 s-1. Factor Xa-platelet binding parameters are not altered by the use of different platelet agonists, the choice of anticoagulant, or platelet washing procedure. Kinetics of prothrombin activation indicate also that monocytes, lymphocytes, and neutrophils possess, respectively, 16,000, 45,000, and 8,000 Factor Va-Factor Xa receptor sites/cell, which are all governed by apparent KdS approximately equal to 10(-10) M. Enzymatic complexes bound to monocytes or neutrophils exhibit kcat values similar to the platelet-bound complex. Complexes bound to lymphocytes are only 25% as active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号