首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Even though nearly every human gene has at least one alternative splice form, very little is so far known about the structure and function of resulting protein products. It is becoming increasingly clear that a significant fraction of all isoforms are products of noisy selection of splice sites and thus contribute little to actual functional diversity, and may potentially be deleterious. In this study, we examine the impact of alternative splicing on protein sequence and structure in three datasets: alternative splicing events conserved across multiple species, alternative splicing events in genes that are strongly linked to disease and all observed alternative splicing events. We find that the vast majority of all alternative isoforms result in unstable protein conformations. In contrast to that, the small subset of isoforms conserved across species tends to maintain protein structural integrity to a greater extent. Alternative splicing in disease-associated genes produces unstable structures just as frequently as all other genes, indicating that selection to reduce the effects of alternative splicing on this set is not especially pronounced. Overall, the properties of alternative spliced proteins are consistent with the outcome of noisy selection of splice sites by splicing machinery.  相似文献   

2.
Alternative mRNA splicing is becoming increasingly recognized as an important mechanism for the generation of structural and functional diversity in proteins. Recent estimations predict that approximately 50% of all eukaryotic proteins can be alternatively spliced. Several lines of evidence suggest that alternative mRNA splicing results in small changes in protein structure and is likely to fine-tune the function and specificity of the affected protein. However, knowledge of how alternative splicing regulates cellular processes on the molecular level is still limited. It is only recently that structures of alternatively spliced proteins have been solved. These studies have shown that alternative splicing affects the structure not only in the vicinity of the splice site but also at long distance.  相似文献   

3.
Alternative splicing is thought to be a major source of functional diversity in animal proteins. We analyzed the evolutionary conservation of proteins encoded by alternatively spliced genes and predicted the ancestral state for 73 cases of alternative splicing (25 insertions and 48 deletions). The amino acid sequences of most of the inserts in proteins produced by alternative splicing are as conserved as the surrounding sequences. Thus, alternative splicing often creates novel isoforms by the insertion of new, functional protein sequences that probably originated from noncoding sequences of introns.  相似文献   

4.
5.
Insertions, duplications, and deletions of sequence segments are thought to be major evolutionary mechanisms that increase the structural and functional diversity of proteins. Alternative splicing, for example, is an intracellular editing mechanism that is thought to generate isoforms for 30%-50% of all human genes. Whereas the inserted sequences usually display only minor structural rearrangements at the insertion site, recent observations indicate that they may also cause more dramatic structural displacements of adjacent structures. In the present study we test how artificially inserted sequences change the structure of the beta-sheet region in T4 lysozyme. Copies of two different beta-strands were inserted into two different loops of the beta-sheet, and the structures were determined. Not surprisingly, one insert "loops out" at its insertion site and forms a new small beta-hairpin structure. Unexpectedly, however, the second insertion leads to displacement of adjacent strands and a sequential reorganization of the beta-sheet topology. Even though the insertions were performed at two different sites, looping out occurred at the C-terminal end of the same beta-strand. Reasons as to why a non-native sequence would be recruited to replace that which occurs in the native protein are discussed. Our results illustrate how sequence insertions can facilitate protein evolution through both local and nonlocal changes in structure.  相似文献   

6.
Three main molecular mechanisms are considered to contribute expanding the repertoire and diversity of proteins present in living organisms: first, at DNA level (gene polymorphisms and single nucleotide polymorphisms); second, at messenger RNA (pre‐mRNA and mRNA) level including alternative splicing (also termed differential splicing or cis‐splicing); finally, at the protein level mainly driven through PTM and specific proteolytic cleavages. Chimeric mRNAs constitute an alternative source of protein diversity, which can be generated either by chromosomal translocations or by trans‐splicing events. The occurrence of chimeric mRNAs and proteins is a frequent event in cells from the immune system and cancer cells, mainly as a consequence of gene rearrangements. Recent reports support that chimeric proteins may also be expressed at low levels under normal physiological circumstances, thus, representing a novel source of protein diversity. Notably, recent publications demonstrate that chimeric protein products can be successfully identified through bottom‐up proteomic analyses. Several questions remain unsolved, such as the physiological role and impact of such chimeric proteins or the potential occurrence of chimeric proteins in higher eukaryotic organisms different from humans. The occurrence of chimeric proteins certainly seems to be another unforeseen source of complexity for the proteome. It may be a process to take in mind not only when performing bottom‐up proteomic analyses in cancer studies but also in general bottom‐up proteomics experiments.  相似文献   

7.
8.

Background  

Protein sequence insertions/deletions (indels) can be introduced during evolution or through alternative splicing (AS). Alternative splicing is an important biological phenomenon and is considered as the major means of expanding structural and functional diversity in eukaryotes. Knowledge of the structural changes due to indels is critical to our understanding of the evolution of protein structure and function. In addition, it can help us probe the evolution of alternative splicing and the diversity of functional isoforms. However, little is known about the effects of indels, in particular the ones involving core secondary structures, on the folding of protein structures. The long term goal of our study is to accurately predict the protein AS isoform structures. As a first step towards this goal, we performed a systematic analysis on the structural changes caused by short internal indels through mining highly homologous proteins in Protein Data Bank (PDB).  相似文献   

9.
Prior to the completion of the human genome project, the human genome was thought to have a greater number of genes as it seemed structurally and functionally more complex than other simpler organisms. This along with the belief of “one gene, one protein”, were demonstrated to be incorrect. The inequality in the ratio of gene to protein formation gave rise to the theory of alternative splicing (AS). AS is a mechanism by which one gene gives rise to multiple protein products. Numerous databases and online bioinformatic tools are available for the detection and analysis of AS. Bioinformatics provides an important approach to study mRNA and protein diversity by various tools such as expressed sequence tag (EST) sequences obtained from completely processed mRNA. Microarrays and deep sequencing approaches also aid in the detection of splicing events. Initially it was postulated that AS occurred only in about 5% of all genes but was later found to be more abundant. Using bioinformatic approaches, the level of AS in human genes was found to be fairly high with 35-59% of genes having at least one AS form. Our ability to determine and predict AS is important as disorders in splicing patterns may lead to abnormal splice variants resulting in genetic diseases. In addition, the diversity of proteins produced by AS poses a challenge for successful drug discovery and therefore a greater understanding of AS would be beneficial.  相似文献   

10.
The biosynthesis, structures, and functions of O-glycosylation, as a complex posttranslational event, is reviewed and compared for the various types of O-glycans. Mucin-type O-glycosylation is initiated by tissue-specific addition of a GalNAc-residue to a serine or a threonine of the fully folded protein. This event is dependent on the primary, secondary, and tertiary structure of the glycoprotein. Further elongation and termination by specific transferases is highly regulated. We also describe some of the physical and biological properties that O-glycosylation confers on the protein to which the sugars are attached. These include providing the basis for rigid conformations and for protein stability. Clustering of O-glycans in Ser/Thr(/Pro)-rich domains allows glycan determinants such as sialyl Lewis X to be presented as multivalent ligands, essential for functional recognition. An additional level of regulation, imposed by exon shuffling and alternative splicing of mRNA, results in the expression of proteins that differ only by the presence or absence of Ser/Thr(/Pro)-rich domains. These domains may serve as protease-resistant spacers in cell surface glycoproteins. Further biological roles for O-glycosylation discussed include the role of isolated mucin-type O-glycans in recognition events (e.g., during fertilization and in the immune response) and in the modulation of the activity of enzymes and signaling molecules. In some cases, the O-linked oligosac-charides are necessary for glycoprotein expression and processing. In contrast to the more common mucin-type O-glycosylation, some specific types of O-glycosylation, such as the O-linked attachment of fucose and glucose, are sequon dependent. The reversible attachment of O-linked GlcNAc to cytoplasmic and nuclear proteins is thought to play a regulatory role in protein function. The recent development of novel technologies for glycan analysis promises to yield new insights in the factors that determine site occupancy, structure-function relationship, and the contribution of O-linked sugars to physiological and pathological processes. These include diseases where one or more of the O-glycan processing enzymes are aberrantly regulated or deficient, such as HEMPAS and cancer.  相似文献   

11.
12.
13.
14.
15.
CUG-BP and ETR-3 like factor (CELF) proteins are regulators of pre-mRNA alternative splicing. We created a series of truncation mutants to identify the regions of CELF proteins that are required to activate and to repress alternative splicing of different exons. This analysis was performed in parallel on two CELF proteins, ETR-3 (CUG-BP2, NAPOR, BRUNOL3) and CELF4 (BRUNOL4). We identified a 20-residue region of CELF4 required for repression or activation, in contrast to ETR-3, for which the required residues are more disperse. For both ETR-3 and CELF4, distinct regions were required to activate splicing of two different alternative exons, while regions required for repression of an additional third exon overlapped with regions required for activation. Our results suggest that activation of different splicing events by individual CELF proteins requires separable regions, implying the nature of the protein–protein interactions required for activation are target-dependent. The finding that residues required for activation and repression overlap suggests either that the same region interacts with different proteins to mediate different effects or that interactions with the same proteins can have different effects on splicing due to yet-to-be defined downstream events. These results provide a foundation for identifying CELF-interacting proteins involved in activated and/or repressed splicing.  相似文献   

16.
17.
水稻NBS-LRR基因选择性剪接的全基因组检测及分析   总被引:1,自引:0,他引:1  
顾连峰  郭荣发 《遗传学报》2007,34(3):247-257
选择性剪接是促进基因组复杂性和蛋白质组多样性的一种主要机制,但是对水稻NBS-LRR序列选择性剪接的全基因组分析却未见报道。通过隐马尔柯夫模型搜索,从TIGR数据库里得到了855条编码NBS-LRR基序的序列。利用这些序列在KOME、TIGR基因索引及UniProt三个数据库中进行同源搜索,获得同源的完整cDNA序列、假设一致性序列和蛋白质序列。再利用Spidey和SIM4程序把完整cDNA序列和假设一致性序列联配到相应的BAC序列上来预测选择性剪接。蛋白质序列和基因组序列之间的联配使用tBLASTn。在这875个NBS-LRR基因中,119个基因具有选择性剪接现象,其中包括71内含子保留,20个外显子跳跃,25个选择性起始,16个选择性终止,12个5′端的选择性剪接和16个3′端选择性剪接。大多数选择性剪接都为两个和多个转录本所支持。可以通过访问http://www.bioinfor.org查询这些数据。进而通过生物信息学分析剪接边界发现外显子跳跃和内含子保留的‘GT…AG’的规则不如组成型的保守。这暗示了它们是通过不同的调控机制来指导剪接变构体的形成。通过分析内含子保留对蛋白质的影响,发现选择性剪接的蛋白更倾向于改变其C端氨基酸序列。最后对选择性剪接的组织分布和蛋白质定位进行分析,结果表明选择性剪接的最大类的组织分布是根和愈伤组织。超过1/3剪接变构体的蛋白质定位是质膜和细胞质。这些选择性剪接蛋白可能在抗病信号转导中起到重要作用。  相似文献   

18.
After the surprisingly low number of genes identified in the human genome, alternative splicing emerged as a major mechanism to generate protein diversity in higher eukaryotes. However, it is still not known if its prevalence along the genome evolution has contributed to the overall functional protein diversity or if it simply reflects splicing noise. The (βα)8 barrel or TIM barrel is one of the most frequent, versatile, and ancient fold encountered among enzymes. Here, we analyze the structural modifications present in TIM barrel proteins from the human genome product of alternative splicing events. We found that 87% of all splicing events involved deletions; most of these events resulted in protein fragments that corresponded to the (βα)2, (βα)4, (βα)5, (βα)6, and (βα)7 subdomains of TIM barrels. Because approximately 7% of all the splicing events involved internal β-strand substitutions, we decided, based on the genomic data, to design β-strand and α-helix substitutions in a well-studied TIM barrel enzyme. The biochemical characterization of one of the chimeric variants suggests that some of the splice variants in the human genome with β-strand substitutions may be evolving novel functions via either the oligomeric state or substrate specificity. We provide results of how the splice variants represent subdomains that correlate with the independently folding and evolving structural units previously reported. This work is the first to observe a link between the structural features of the barrel and a recurrent genetic mechanism. Our results suggest that it is reasonable to expect that a sizeable fraction of splice variants found in the human genome represent structurally viable functional proteins. Our data provide additional support for the hypothesis of the origin of the TIM barrel fold through the assembly of smaller subdomains. We suggest a model of how nature explores new proteins through alternative splicing as a mechanism to diversify the proteins encoded in the human genome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号